On the (1+1/2) layer neural networks as universal approximators

被引:0
|
作者
Ciuca, I [1 ]
Ware, JA [1 ]
机构
[1] Res Inst Informat, Bucharest, Romania
来源
IEEE WORLD CONGRESS ON COMPUTATIONAL INTELLIGENCE | 1998年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Paper deals with the approximation of continuous functions by feedforward neural networks. After presenting one of the main results of Ito, the paper tries to get a universal approximator implementable as (1+1/2) layer neural network using Hcaviside function as univariate functions. it presents an explicit formula for function approximation implementable as a three-layer feedforward neural network instead of a four-layer neural networks. These three-layer feedforward neural networks have the same number of neurons in the hidden layer as the equivalent four-layer neural networks have in the second hidden layer.
引用
收藏
页码:1218 / 1223
页数:6
相关论文
共 50 条
  • [21] Neural Networks for Constitutive Modeling: From Universal Function Approximators to Advanced Models and the Integration of Physics
    Johannes Dornheim
    Lukas Morand
    Hemanth Janarthanam Nallani
    Dirk Helm
    Archives of Computational Methods in Engineering, 2024, 31 : 1097 - 1127
  • [22] 1+1 Dedicated Optical-Layer Protection Strategy for Filterless Optical Networks
    Xu, Zhenyu
    Archambault, Emile
    Tremblay, Christine
    Chen, Jiajia
    Wosinska, Lena
    Belanger, Michel P.
    Littlewood, Paul
    IEEE COMMUNICATIONS LETTERS, 2014, 18 (01) : 98 - 101
  • [23] Can neural nets be universal approximators for fuzzy functions?
    Buckley, JJ
    Hayashi, Y
    PROCEEDINGS OF THE SIXTH IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS I - III, 1997, : 1101 - 1104
  • [24] Two-hidden-layer feed-forward networks are universal approximators: A constructive approach
    Paluzo-Hidalgo, Eduardo
    Gonzalez-Diaz, Rocio
    Gutierrez-Naranjo, Miguel A.
    NEURAL NETWORKS, 2020, 131 (131) : 29 - 36
  • [25] Deep, Narrow Sigmoid Belief Networks Are Universal Approximators
    Sutskever, Ilya
    Hinton, Geoffrey E.
    NEURAL COMPUTATION, 2008, 20 (11) : 2629 - 2636
  • [26] Neural Networks Comprising Sequentially Semiseparable Matrices with One Dimensional State Variable are Universal Approximators
    Kissel, Matthias
    Diepold, Klaus
    MACHINE LEARNING AND PRINCIPLES AND PRACTICE OF KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2023, PT IV, 2025, 2136 : 115 - 125
  • [27] 1+1≠2
    王兵
    电脑爱好者, 2000, (13) : 61 - 61
  • [29] 1+1>2
    郑宝银
    国际贸易问题, 2005, (06) : 1 - 1
  • [30] 1+1>2
    余明
    机电信息, 2018, (31) : 26 - 27