Length effect of stimuli-responsive block copolymer prodrug filomicelles on drug delivery efficiency

被引:34
|
作者
Ke, Wendong [1 ]
Lu, Nannan [2 ]
Japir, Abd Al-Wali Mohammed M. [1 ]
Zhou, Qinghao [1 ]
Xi, Longchang [1 ]
Wang, Yuheng [1 ]
Dutta, Debabrata [1 ]
Zhou, Min [3 ]
Pan, Yueyin [2 ]
Ge, Zhishen [1 ,2 ]
机构
[1] Univ Sci & Technol China, Dept Polymer Sci & Engn, CAS Key Lab Soft Matter Chem, Hefei 230026, Anhui, Peoples R China
[2] USTC, Affiliated Hosp 1, Div Life Sci & Med, Dept Oncol, Hefei 230001, Anhui, Peoples R China
[3] USTC, Affiliated Hosp 1, Div Life Sci & Med, Neurocrit Care Unit, Hefei 230001, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
Filomicelle; Nanoparticle shape; Anticancer drug delivery; Block copolymer prodrug; Responsive drug release; CELLULAR INTERNALIZATION; POLYMERIC MICELLES; PARTICLE-SHAPE; TUMOR; NANOPARTICLES; NANOMEDICINE; TRAFFICKING; ASSEMBLIES; CHEMISTRY; SIZE;
D O I
10.1016/j.jconrel.2019.12.012
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Filomicelles possess some unique properties for improved in vivo drug delivery efficiency relative to commonly used spherical nanocarriers, which have attracted great interests. However, the length effect of the block copolymer prodrug-based filomicelles with a comparable cross-section diameter on the drug delivery efficiency and antitumor efficacy still need to be systematically studied. In this report, we prepare three optimized nanoparticles with a comparable cross-section diameter of similar to 40 nm, including long filomicelles (LFMs) with the length of similar to 2.5 mu m, short filomicelles (SFMs) with the length of similar to 180 nm, and spherical micelles (SMs) with a diameter of similar to 40 nm. All of them are self-assembled from the pH and oxidation dual-responsive block copolymer prodrug, PEG-b-P(CPTKMA-co-PEMA), consisting of poly(ethylene glycol) (PEG) and a copolymerized block of thioketal-linked camptothecin methacrylate (CPTKMA) and 2-(pentamethyleneimino) ethyl methacrylate (PEMA). At pH 6.5, the nanoparticles are positively charged due to the protonation of PPEMA segments. Among them, SFMs are demonstrated to be internalized into cells most efficiently at pH 6.5 due to larger interaction areas with cell membranes relative to SMs. Moreover, SFMs show prolonged blood circulation similar to SMs as well as deepest tumor penetration and best antitumor efficacy among the three nanoparticles. LFMs show worst in vivo performance because their too long structure limits the cellular uptake and tumor accumulation. Therefore, the responsive polymer prodrug filomicelles with an optimized length show great potentials to overcome the physiological barriers and improve the drug delivery efficiency.
引用
收藏
页码:67 / 77
页数:11
相关论文
共 50 条
  • [1] Stimuli-Responsive Prodrug Chemistries for Drug Delivery
    Taresco, Vincenzo
    Alexander, Cameron
    Singh, Nishant
    Pearce, Amanda K.
    ADVANCED THERAPEUTICS, 2018, 1 (04)
  • [2] Recent advances in stimuli-responsive degradable block copolymer micelles: synthesis and controlled drug delivery applications
    Zhang, Qian
    Ko, Na Re
    Oh, Jung Kwon
    CHEMICAL COMMUNICATIONS, 2012, 48 (61) : 7542 - 7552
  • [3] Stimuli-responsive nanocarriers for drug delivery
    Simona Mura
    Julien Nicolas
    Patrick Couvreur
    Nature Materials, 2013, 12 : 991 - 1003
  • [4] Stimuli-responsive dendrimers in drug delivery
    Wang, Hui
    Huang, Quan
    Chang, Hong
    Xiao, Jianru
    Cheng, Yiyun
    BIOMATERIALS SCIENCE, 2016, 4 (03) : 375 - 390
  • [5] Stimuli-responsive nanocarriers for drug delivery
    Mura, Simona
    Nicolas, Julien
    Couvreur, Patrick
    NATURE MATERIALS, 2013, 12 (11) : 991 - 1003
  • [6] Stimuli-responsive nanocarriers for drug delivery
    Institut Galien Paris-Sud, Université Paris-Sud, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry cedex, France
    Nat. Mater., 2013, 11 (991-1003):
  • [7] Stimuli-responsive liposomes for drug delivery
    Lee, Y.
    Thompson, D. H.
    WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY, 2017, 9 (05)
  • [8] Stimuli-responsive drug delivery systems
    Yang, Jerry
    ADVANCED DRUG DELIVERY REVIEWS, 2012, 64 (11) : 965 - 966
  • [9] Are stimuli-responsive hybrid copolymer nanoparticles the next innovation in tumor drug delivery?
    Hruby, Martin
    EXPERT OPINION ON DRUG DELIVERY, 2025, 22 (01) : 11 - 14
  • [10] Stimuli-responsive block copolymer-protein hybrids
    Sumerlin, Brent S.
    Li, Ming
    Li, Hongmei
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 243