Using Gene Ontology annotations in exploratory microarray clustering to understand cancer etiology

被引:12
作者
Macintyre, Geoff [1 ]
Bailey, James [1 ]
Gustafsson, Daniel [3 ]
Haviv, Izhak [2 ,4 ,5 ]
Kowalczyk, Adam
机构
[1] Univ Melbourne, Dept Comp Sci & Software Engn, Melbourne, Vic 3010, Australia
[2] Peter MacCallum Canc Inst, Ian Potter Ctr Canc Genom & Predict Med, Melbourne, Vic, Australia
[3] La Trobe Univ, Dept Comp Sci & Comp Engn, Bundoora, Vic 3086, Australia
[4] Baker IDI, Epigenet Grp, Melbourne, Vic, Australia
[5] Univ Melbourne, Dept Biochem & Mol Biol, Melbourne, Vic 3010, Australia
基金
澳大利亚国家健康与医学研究理事会; 澳大利亚研究理事会;
关键词
Microarray; Gene Ontology; Clustering; Cancer; TOOL;
D O I
10.1016/j.patrec.2010.01.006
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Gene expression profiling provides insight into the functions of genes at a molecular level. Clustering of gene expression profiles can facilitate the identification of the underlying driving biological program causing genes' co-expression. Standard clustering methods, grouping genes based on similar expression values, fail to capture weak expression correlations potentially causing genes in the same biological process to be grouped separately. We have developed a novel clustering algorithm, which incorporates functional gene information from the Gene Ontology into the clustering process, resulting in more biologically meaningful clusters. We have validated our method using two multi-cancer microarray datasets. In addition, we show the potential of such methods for the exploration of cancer etiology. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:2138 / 2146
页数:9
相关论文
共 18 条
  • [1] FatiGO:: a web tool for finding significant associations of Gene Ontology terms with groups of genes
    Al-Shahrour, F
    Díaz-Uriarte, R
    Dopazo, J
    [J]. BIOINFORMATICS, 2004, 20 (04) : 578 - 580
  • [2] Improved scoring of functional groups from gene expression data by decorrelating GO graph structure
    Alexa, Adrian
    Rahnenfuehrer, Joerg
    Lengauer, Thomas
    [J]. BIOINFORMATICS, 2006, 22 (13) : 1600 - 1607
  • [3] Gene Ontology: tool for the unification of biology
    Ashburner, M
    Ball, CA
    Blake, JA
    Botstein, D
    Butler, H
    Cherry, JM
    Davis, AP
    Dolinski, K
    Dwight, SS
    Eppig, JT
    Harris, MA
    Hill, DP
    Issel-Tarver, L
    Kasarskis, A
    Lewis, S
    Matese, JC
    Richardson, JE
    Ringwald, M
    Rubin, GM
    Sherlock, G
    [J]. NATURE GENETICS, 2000, 25 (01) : 25 - 29
  • [4] BORATYN GM, 2007, BIOINFORMATION, P1
  • [5] GeneMerge - post-genomic analysis, data mining, and hypothesis testing
    Castillo-Davis, CI
    Hartl, DL
    [J]. BIOINFORMATICS, 2003, 19 (07) : 891 - 892
  • [6] Cheng Jill, 2004, J Biopharm Stat, V14, P687, DOI 10.1081/BIP-200025659
  • [7] Cluster analysis and display of genome-wide expression patterns
    Eisen, MB
    Spellman, PT
    Brown, PO
    Botstein, D
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (25) : 14863 - 14868
  • [8] Incorporating biological knowledge into distance-based clustering analysis of microarray gene expression data
    Huang, DS
    Pan, W
    [J]. BIOINFORMATICS, 2006, 22 (10) : 1259 - 1268
  • [9] KING A, 2009, CURR OPIN CELL BIOL
  • [10] A graph-theoretic modeling on GO space for biological interpretation of gene clusters
    Lee, SG
    Hur, JU
    Kim, YS
    [J]. BIOINFORMATICS, 2004, 20 (03) : 381 - 388