ACPYPE update for nonuniform 1-4 scale factors: Conversion of the GLYCAM06 force field from AMBER to GROMACS

被引:60
作者
Bernardi, Austen [1 ]
Faller, Roland [1 ]
Reith, Dirk [2 ]
Kirschner, Karl N. [2 ,3 ]
机构
[1] Univ Calif Davis, Dept Chem Engn, Davis, CA 95616 USA
[2] Bonn Rhein Sieg Univ Appl Sci, Dept Elect Engn, Mech Engn & Tech Journalism, Grantham Allee 20, D-53757 St Augustin, Germany
[3] Bonn Rhein Sieg Univ Appl Sci, Dept Comp Sci, Grantham Allee 20, D-53757 St Augustin, Germany
关键词
ACPYPE; Glycam06; Force field; Nonbonded scaling factor; Carbohydrate; Gromacs; NONCOVALENT INTERACTION; MOLECULAR-DYNAMICS; INTEGRALS; ENERGIES; MP2.X;
D O I
10.1016/j.softx.2019.100241
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Herein we report an update to ACPYPE, a Python3 tool that now properly converts AMBER to GROMACS topologies for force fields that utilize nondefault and nonuniform 1-4 electrostatic and nonbonded scaling factors or negative dihedral force constants. Prior to this work, ACPYPE only converted AMBER topologies that used uniform, default 1-4 scaling factors and positive dihedral force constants. We demonstrate that the updated ACPYPE accurately transfers the GLYCAM06 force field from AMBER to GROMACS topology files, which employs non-uniform 1-4 scaling factors as well as negative dihedral force constants. Validation was performed using beta-D-G1cNAc through gas-phase analysis of dihedral energy curves and probability density functions. The updated ACPYPE retains all of its original functionality, but now allows the simulation of complex glycomolecular systems in GROMACS using AMBER-originated force fields. ACPYPE is available for download at https://github.com/alanwilter/acpype. (C) 2019 Published by Elsevier B.V.
引用
收藏
页数:7
相关论文
共 25 条
[1]   Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers [J].
Abraham, Mark James ;
Murtola, Teemu ;
Schulz, Roland ;
Páll, Szilárd ;
Smith, Jeremy C. ;
Hess, Berk ;
Lindah, Erik .
SoftwareX, 2015, 1-2 :19-25
[2]   MOLECULAR-DYNAMICS WITH COUPLING TO AN EXTERNAL BATH [J].
BERENDSEN, HJC ;
POSTMA, JPM ;
VANGUNSTEREN, WF ;
DINOLA, A ;
HAAK, JR .
JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (08) :3684-3690
[3]   Structural analysis of human glycoprotein butyrylcholinesterase using atomistic molecular dynamics: The importance of glycosylation site ASN241 [J].
Bernardi, Austen ;
Kirschner, Karl N. ;
Faller, Roland .
PLOS ONE, 2017, 12 (11)
[4]   CHARMM: The Biomolecular Simulation Program [J].
Brooks, B. R. ;
Brooks, C. L., III ;
Mackerell, A. D., Jr. ;
Nilsson, L. ;
Petrella, R. J. ;
Roux, B. ;
Won, Y. ;
Archontis, G. ;
Bartels, C. ;
Boresch, S. ;
Caflisch, A. ;
Caves, L. ;
Cui, Q. ;
Dinner, A. R. ;
Feig, M. ;
Fischer, S. ;
Gao, J. ;
Hodoscek, M. ;
Im, W. ;
Kuczera, K. ;
Lazaridis, T. ;
Ma, J. ;
Ovchinnikov, V. ;
Paci, E. ;
Pastor, R. W. ;
Post, C. B. ;
Pu, J. Z. ;
Schaefer, M. ;
Tidor, B. ;
Venable, R. M. ;
Woodcock, H. L. ;
Wu, X. ;
Yang, W. ;
York, D. M. ;
Karplus, M. .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2009, 30 (10) :1545-1614
[5]   Version 1.2 of the Crystallography and NMR system [J].
Brunger, Axel T. .
NATURE PROTOCOLS, 2007, 2 (11) :2728-2733
[6]  
Case D., 2016, Amber 16, DOI DOI 10.13140/RG.2.2.27958.70729
[7]   The R.ED. tools: advances in RESP and ESP charge derivation and force field library building [J].
Dupradeau, Francois-Yves ;
Pigache, Adrien ;
Zaffran, Thomas ;
Savineau, Corentin ;
Lelong, Rodolphe ;
Grivel, Nicolas ;
Lelong, Dimitri ;
Rosanski, Wilfried ;
Cieplak, Piotr .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2010, 12 (28) :7821-7839
[8]   USE OF APPROXIMATE INTEGRALS IN ABINITIO THEORY - AN APPLICATION IN MP2 ENERGY CALCULATIONS [J].
FEYEREISEN, M ;
FITZGERALD, G ;
KOMORNICKI, A .
CHEMICAL PHYSICS LETTERS, 1993, 208 (5-6) :359-363
[9]  
Sousa da Silva Alan W, 2012, BMC Res Notes, V5, P367, DOI [10.1186/1756-0500-5-185, 10.1186/1756-0500-5-367]
[10]  
Gordon MS, 2005, THEORY AND APPLICATIONS OF COMPUTATIONAL CHEMISTRY: THE FIRST FORTY YEARS, P1167, DOI 10.1016/B978-044451719-7/50084-6