Combining molecular and imaging metrics in cancer: radiogenomics

被引:102
作者
Lo Gullo, Roberto [1 ]
Daimiel, Isaac [1 ]
Morris, Elizabeth A. [1 ]
Pinker, Katja [1 ,2 ]
机构
[1] Mem Sloan Kettering Canc Ctr, Breast Imaging Serv, Dept Radiol, 300 E 66th St, New York, NY 10065 USA
[2] Med Univ Vienna, Dept Biomed Imaging & Image Guided Therapy Mol &, Waehringer Guertel 18-20, A-1090 Vienna, Austria
基金
欧盟地平线“2020”;
关键词
Radiomics; Radiogenomics; Molecular profiling; Precision medicine; APPARENT DIFFUSION-COEFFICIENT; RENAL-CELL-CARCINOMA; GROWTH-FACTOR RECEPTOR; RELEVANT GENE SIGNATURES; SEROUS OVARIAN-CANCER; BREAST-CANCER; PROSTATE-CANCER; TEXTURE ANALYSIS; HEPATOCELLULAR-CARCINOMA; GLIOBLASTOMA-MULTIFORME;
D O I
10.1186/s13244-019-0795-6
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Background Radiogenomics is the extension of radiomics through the combination of genetic and radiomic data. Because genetic testing remains expensive, invasive, and time-consuming, and thus unavailable for all patients, radiogenomics may play an important role in providing accurate imaging surrogates which are correlated with genetic expression, thereby serving as a substitute for genetic testing. Main body In this article, we define the meaning of radiogenomics and the difference between radiomics and radiogenomics. We provide an up-to-date review of the radiomics and radiogenomics literature in oncology, focusing on breast, brain, gynecological, liver, kidney, prostate and lung malignancies. We also discuss the current challenges to radiogenomics analysis. Conclusion Radiomics and radiogenomics are promising to increase precision in diagnosis, assessment of prognosis, and prediction of treatment response, providing valuable information for patient care throughout the course of the disease, given that this information is easily obtainable with imaging. Larger prospective studies and standardization will be needed to define relevant imaging biomarkers before they can be implemented into the clinical workflow.
引用
收藏
页数:17
相关论文
共 149 条
  • [1] Intrahepatic cholangiocarcinoma: can imaging phenotypes predict survival and tumor genetics?
    Aherne, Emily A.
    Pak, Linda M.
    Goldman, Debra A.
    Gonen, Mithat
    Jarnagin, William R.
    Simpson, Amber L.
    Do, Richard K.
    [J]. ABDOMINAL RADIOLOGY, 2018, 43 (10) : 2665 - 2672
  • [2] Radiogenomics in renal cell carcinoma
    Alessandrino, Francesco
    Shinagare, Atul B.
    Bosse, Dominick
    Choueiri, Toni K.
    Krajewski, Katherine M.
    [J]. ABDOMINAL RADIOLOGY, 2019, 44 (06) : 1990 - 1998
  • [3] Pharmacokinetic parameters derived from dynamic contrast enhanced MRI of cervical cancers predict chemoradiotherapy outcome
    Andersen, Erlend K. F.
    Hole, Knut Hakon
    Lund, Kjersti V.
    Sundfor, Kolbein
    Kristensen, Gunnar B.
    Lyng, Heidi
    Malinen, Eirik
    [J]. RADIOTHERAPY AND ONCOLOGY, 2013, 107 (01) : 117 - 122
  • [4] [Anonymous], CANC GEN ATL TCGA
  • [5] [Anonymous], CANC IM ARCH TCIA
  • [6] Identification of Intrinsic Imaging Phenotypes for Breast Cancer Tumors: Preliminary Associations with Gene Expression Profiles
    Ashraf, Ahmed Bilal
    Daye, Dania
    Gavenonis, Sara
    Mies, Carolyn
    Feldman, Michael
    Rosen, Mark
    Kontos, Despina
    [J]. RADIOLOGY, 2014, 272 (02) : 374 - 384
  • [7] Imaging genomics in cancer research: limitations and promises
    Bai, Harrison X.
    Lee, Ashley M.
    Yang, Li
    Zhang, Paul
    Davatzikos, Christos
    Maris, John M.
    Diskin, Sharon J.
    [J]. BRITISH JOURNAL OF RADIOLOGY, 2016, 89 (1061)
  • [8] A computed tomography radiogenomic biomarker predicts microvascular invasion and clinical outcomes in hepatocellular carcinoma
    Banerjee, Sudeep
    Wang, David S.
    Kim, Hyun J.
    Sirlin, Claude B.
    Chan, Michael G.
    Korn, Ronald L.
    Rutman, Aaron M.
    Siripongsakun, Surachate
    Lu, David
    Imanbayev, Galym
    Kuo, Michael D.
    [J]. HEPATOLOGY, 2015, 62 (03) : 792 - 800
  • [9] Glioblastoma Multiforme Regional Genetic and Cellular Expression Patterns: Influence on Anatomic and Physiologic MR Imaging
    Barajas, Ramon F., Jr.
    Hodgson, J. Graeme
    Chang, Jamie S.
    Vandenberg, Scott R.
    Yeh, Ru-Fang
    Parsa, Andrew T.
    McDermott, Michael W.
    Berger, Mitchel S.
    Dillon, William P.
    Cha, Soonmee
    [J]. RADIOLOGY, 2010, 254 (02) : 564 - 576
  • [10] Prostate-specific membrane antigen PET/MRI validation of MR textural analysis for detection of transition zone prostate cancer
    Bates, Anthony
    Miles, Kenneth
    [J]. EUROPEAN RADIOLOGY, 2017, 27 (12) : 5290 - 5298