Effects of Fast Charging Modes on Thermal Performance of Lithium-Ion Battery

被引:3
|
作者
Wang, Wentao [1 ,2 ,3 ]
Wang, Yanan [1 ,2 ,3 ]
Ni, Ruke [1 ,2 ,3 ]
Xie, Zongfa [1 ,2 ,3 ]
机构
[1] Shandong Univ, Sch Mech Engn, Jinan 250061, Peoples R China
[2] Shandong Univ, Minist Educ, Key Lab High Efficiency & Clean Mech Manufacture, Jinan 250061, Peoples R China
[3] Shandong Univ, Natl Demonstrat Ctr Expt Mech Engn Educ, Jinan 250061, Peoples R China
基金
国家重点研发计划;
关键词
electrochemical-thermal coupling; fast charging mode; heat generation; lithium-ion batteries; temperature; OPTIMIZATION; BEHAVIOR;
D O I
10.1002/ente.202200415
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Fast charging technology can greatly increase the charging speed and shorten the charging time of electric vehicles, but the heat generation and temperature rise of the lithium-ion battery during the fast charging process seriously affect its electrochemical characteristics and cycle life and even cause safety issues. Therefore, it is necessary to analyze the thermal performance of the lithium-ion battery under fast charging conditions and investigate the effects of different fast charging modes on it. Herein, an NMC lithium-ion cell is taken as the object, and the electrochemical-thermal coupling model is built and verified. Based on this model, the heat generations and temperature rises of the cell in different fast charging modes are analyzed and compared, including constant current (CC) charging, constant voltage (CV) charging, CC-CV charging, stage CC charging, and pulse charging. It is found that the peak temperature of the cell appears at different moments in the above charging modes. The peak temperature and total heat generation during CV charging are much greater than those during charging of other modes. The results can provide references for the design and selection of charging modes and battery thermal management systems toward fast charging technology.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Effects of Structure Parameters on the Thermal Performance of a Ternary Lithium-Ion Battery under Fast Charging Conditions
    Li, Hua
    Wang, Yanan
    He, Xin
    Li, Qingfeng
    Lian, Chen
    Wang, Zhengkun
    ENERGY & FUELS, 2020, 34 (07) : 8891 - 8904
  • [2] Lithium-ion battery fast charging: A review
    Tomaszewska, Anna
    Chu, Zhengyu
    Feng, Xuning
    O'Kane, Simon
    Liu, Xinhua
    Chen, Jingyi
    Ji, Chenzhen
    Endler, Elizabeth
    Li, Ruihe
    Liu, Lishuo
    Li, Yalun
    Zheng, Siqi
    Vetterlein, Sebastian
    Gao, Ming
    Du, Jiuyu
    Parkes, Michael
    Ouyang, Minggao
    Marinescu, Monica
    Offer, Gregory
    Wu, Billy
    ETRANSPORTATION, 2019, 1
  • [3] Predictive Fast Charging of Lithium-ion Battery with Electro-thermal Constraints
    Zhong, Hao
    Wei, Zhongbao
    He, Hongwen
    2020 IEEE 18TH INTERNATIONAL CONFERENCE ON INDUSTRIAL INFORMATICS (INDIN), VOL 1, 2020, : 615 - 620
  • [4] Fast charging of commercial lithium-ion battery without lithium plating
    Thapa, Arun
    Hedding, Noah
    Gao, Hongwei
    JOURNAL OF ENERGY STORAGE, 2023, 74
  • [5] Effects of fast charging on lithium-ion cells
    Bloom, Ira
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 249
  • [6] A Numerical Study of Lithium-Ion Battery Fast Charging Behaviors
    Zhang, Sijie
    Zhao, Rui
    Gu, Junjie
    Liu, Jie
    2018 INTERNATIONAL CONFERENCE ON SENSING, DIAGNOSTICS, PROGNOSTICS, AND CONTROL (SDPC), 2018, : 449 - 454
  • [7] Silicon Anode: A Perspective on Fast Charging Lithium-Ion Battery
    Lee, Jun
    Oh, Gwangeon
    Jung, Ho-Young
    Hwang, Jang-Yeon
    INORGANICS, 2023, 11 (05)
  • [8] Analysis of the Implications of Rapid Charging on Lithium-Ion Battery Performance
    Hasan, Mohammed F.
    Chen, Chien-Fan
    Shaffer, Christian E.
    Mukherjee, Partha P.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (07) : A1382 - A1395
  • [9] Iodized polyacrylonitrile as fast-charging anode for lithium-ion battery
    Wu, Haixia
    Guo, Kailu
    CHINESE CHEMICAL LETTERS, 2024, 35 (10)
  • [10] Iodized polyacrylonitrile as fast-charging anode for lithium-ion battery
    Haixia Wu
    Kailu Guo
    Chinese Chemical Letters, 2024, 35 (10) : 37 - 38