Probabilistic Common Spatial Patterns for Multichannel EEG Analysis

被引:132
作者
Wu, Wei [1 ]
Chen, Zhe [2 ]
Gao, Xiaorong [3 ]
Li, Yuanqing [1 ]
Brown, Emery N. [4 ,5 ]
Gao, Shangkai [3 ]
机构
[1] S China Univ Technol, Sch Automat Sci & Engn, Guangzhou 510640, Guangdong, Peoples R China
[2] NYU, Dept Psychiat, Dept Neurosci & Physiol, Sch Med, New York, NY 10016 USA
[3] Tsinghua Univ, Dept Biomed Engn, Beijing 100084, Peoples R China
[4] Harvard Univ, Dept Brain & Cognit Sci, MIT, Cambridge, MA 02139 USA
[5] Harvard Univ, Div Hlth Sci & Technol, MIT, Cambridge, MA 02139 USA
基金
美国国家科学基金会; 美国国家卫生研究院; 高等学校博士学科点专项科研基金; 中国国家自然科学基金;
关键词
Common spatial patterns; Fukunaga-Koontz transform; sparse Bayesian learning; variational Bayes; electroencephalogram; brain-computer interface; FEATURE-EXTRACTION; CLASSIFICATION; FILTERS; ALGORITHM; OPTIMIZATION; FRAMEWORK; MIXTURES;
D O I
10.1109/TPAMI.2014.2330598
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Common spatial patterns (CSP) is a well-known spatial filtering algorithm for multichannel electroencephalogram (EEG) analysis. In this paper, we cast the CSP algorithm in a probabilistic modeling setting. Specifically, probabilistic CSP (P-CSP) is proposed as a generic EEG spatio-temporal modeling framework that subsumes the CSP and regularized CSP algorithms. The proposed framework enables us to resolve the overfitting issue of CSP in a principled manner. We derive statistical inference algorithms that can alleviate the issue of local optima. In particular, an efficient algorithm based on eigendecomposition is developed for maximum a posteriori (MAP) estimation in the case of isotropic noise. For more general cases, a variational algorithm is developed for group-wise sparse Bayesian learning for the P-CSP model and for automatically determining the model size. The two proposed algorithms are validated on a simulated data set. Their practical efficacy is also demonstrated by successful applications to single-trial classifications of three motor imagery EEG data sets and by the spatio-temporal pattern analysis of one EEG data set recorded in a Stroop color naming task.
引用
收藏
页码:639 / 653
页数:15
相关论文
共 58 条
[1]  
Amari S, 1996, ADV NEUR IN, V8, P757
[2]  
ANDREWS DF, 1974, J ROY STAT SOC B MET, V36, P99
[3]   Optimizing Spatial Filters by Minimizing Within-Class Dissimilarities in Electroencephalogram-Based Brain-Computer Interface [J].
Arvaneh, Mahnaz ;
Guan, Cuntai ;
Ang, Kai Keng ;
Quek, Chai .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2013, 24 (04) :610-619
[4]  
Baars BJ, 2010, COGNITION, BRAIN, AND CONSCIOUSNESS: INTRODUCTION TO COGNITIVE NEUROSCIENCE, 2ND EDITION, P1
[5]   The BCI competition 2003:: Progress and perspectives in detection and discrimination of EEG single trials [J].
Blankertz, B ;
Müller, KR ;
Curio, G ;
Vaughan, TM ;
Schalk, G ;
Wolpaw, JR ;
Schlögl, A ;
Neuper, C ;
Pfurtscheller, G ;
Hinterberger, T ;
Schröder, M ;
Birbaumer, N .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2004, 51 (06) :1044-1051
[6]  
Blankertz B., 2008, Advances in Neural Information Processing Systems, P113
[7]   Optimizing spatial filters for robust EEG single-trial analysis [J].
Blankertz, Benjamin ;
Tomioka, Ryota ;
Lemm, Steven ;
Kawanabe, Motoaki ;
Mueller, Klaus-Robert .
IEEE SIGNAL PROCESSING MAGAZINE, 2008, 25 (01) :41-56
[8]   The BCI competition III:: Validating alternative approaches to actual BCI problems [J].
Blankertz, Benjamin ;
Mueller, Klaus-Robert ;
Krusienski, Dean J. ;
Schalk, Gerwin ;
Wolpaw, Jonathan R. ;
Schloegl, Alois ;
Pfurtscheller, Gert ;
Millan, Jose D. R. ;
Schroeder, Michael ;
Birbaumer, Niels .
IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2006, 14 (02) :153-159
[9]   Single-trial analysis and classification of ERP components - A tutorial [J].
Blankertz, Benjamin ;
Lemm, Steven ;
Treder, Matthias ;
Haufe, Stefan ;
Mueller, Klaus-Robert .
NEUROIMAGE, 2011, 56 (02) :814-825
[10]   Multisubject Learning for Common Spatial Patterns in Motor-Imagery BCI [J].
Devlaminck, Dieter ;
Wyns, Bart ;
Grosse-Wentrup, Moritz ;
Otte, Georges ;
Santens, Patrick .
COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2011, 2011