Two generalizations of projective modules and their applications

被引:43
作者
Wang, Fanggui [1 ]
Kim, Hwankoo [2 ]
机构
[1] Sichuan Normal Univ, Coll Math & Software Sci, Chengdu 610068, Sichuan, Peoples R China
[2] Hoseo Univ, Sch Comp & Informat Engn, Asan 336795, South Korea
基金
新加坡国家研究基金会; 中国国家自然科学基金;
关键词
INJECTIVE-MODULES; INTEGRAL-DOMAINS; W-MODULES; RING; IDEAL;
D O I
10.1016/j.jpaa.2014.07.025
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let R be a commutative ring, M be an R-module, and w be the so-called w-operation on R. Set G(w) = {f is an element of R[X] vertical bar c(f)(w) = R}, where c(f) denotes the content of f. Let R{X} = R[X]G(w) and M{X} = M[X]G(w) be the w-Nagata ring of R and the w-Nagata module of M respectively. Then we introduce and study two concepts of w-projective modules and w-invertible modules, which both generalize projective modules. To do so, we use two main methods of which one is to localize at maximal w-ideals of R and the other is to utilize w-Nagata modules over w-Nagata rings. In particular, it is shown that an R-module M is w-projective of finite type if and only if M{X} is finitely generated projective over R{X}; M is w-invertible if and only if M{X} is invertible over R{X}. As applications, it is shown that R is semisimple if and only if every R-module is w-projective and that, in a Q(0)-PVMR, every finite type semi-regular module is w-projective. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:2099 / 2123
页数:25
相关论文
共 32 条
[1]  
[Anonymous], 1994, CAMBRIDGE STUD ADV M
[2]  
BLAND PE, 1998, TOPICS TORSION THEOR, V103
[3]   INTEGRAL DOMAINS IN WHICH EVERY NONZERO t-LOCALLY PRINCIPAL IDEAL IS t-INVERTIBLE [J].
Chang, Gyu Whan ;
Kim, Hwankoo ;
Lim, Jung Wook .
COMMUNICATIONS IN ALGEBRA, 2013, 41 (10) :3805-3819
[4]   T-LINKED OVERRINGS AND PRUFER V-MULTIPLICATION DOMAINS [J].
DOBBS, DE ;
HOUSTON, EG ;
LUCAS, TG ;
ZAFRULLAH, M .
COMMUNICATIONS IN ALGEBRA, 1989, 17 (11) :2835-2852
[5]   Injective modules and semistar operations [J].
Fusacchia, Gabriele .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2012, 216 (01) :77-90
[6]  
Gilmer R., 1992, QUEEN PAP PURE APPL, V90
[7]   FLAT IDEALS 2 [J].
GLAZ, S ;
VASCONCELOS, WV .
MANUSCRIPTA MATHEMATICA, 1977, 22 (04) :325-341
[8]   ESSENTIAL RING WHICH IS NOT A UPSILON-MULTIPLICATION RING [J].
HEINZER, W ;
OHM, J .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1973, 25 (04) :856-861
[9]   ON T-INVERTIBILITY-II [J].
HOUSTON, E ;
ZAFRULLAH, M .
COMMUNICATIONS IN ALGEBRA, 1989, 17 (08) :1955-1969
[10]  
Houston E., INTEGRAL DOMAINS WHI