YANG-TYPE INEQUALITIES FOR WEIGHTED EIGENVALUES OF A SECOND ORDER UNIFORMLY ELLIPTIC OPERATOR WITH A NONNEGATIVE POTENTIAL

被引:13
作者
Sun, He-Jun [1 ]
机构
[1] Nanjing Univ Sci & Technol, Dept Appl Math, Coll Sci, Nanjing 210094, Peoples R China
关键词
Eigenvalue; universal inequality; elliptic operator; Laplacian; Schrodinger operator; BOUNDS; LAPLACIAN;
D O I
10.1090/S0002-9939-10-10321-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the Dirichlet weighted eigenvalue problem of a second order uniformly elliptic operator with a nonnegative potential on a bounded domain Omega subset of R-n. First, we prove a general inequality of eigenvalues for this problem. Then, by using this general inequality, we obtain Yang-type inequalities which give universal upper bounds for eigenvalues. An explicit estimate for the gaps of any two consecutive eigenvalues is also derived. Our results contain and extend the previous results for eigenvalues of the Laplacian, the Schrodinger operator and the second order elliptic operator on a bounded domain Omega subset of R-n.
引用
收藏
页码:2827 / 2837
页数:11
相关论文
共 20 条
[1]  
[Anonymous], LONDON MATH SOC LECT
[2]  
[Anonymous], STOCHASTIC SYSTEMS M
[3]   The universal eigenvalue bounds of Payne-Polya-Weinberger, Hile-Protter, and H C Yang [J].
Ashbaugh, MS .
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2002, 112 (01) :3-30
[4]   Extrinsic estimates for eigenvalues of the Laplace operator [J].
Chen, Daguang ;
Cheng, Qing-Ming .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2008, 60 (02) :325-339
[5]   Bounds on eigenvalues of Dirichlet Laplacian [J].
Cheng, Qing-Ming ;
Yang, Hongcang .
MATHEMATISCHE ANNALEN, 2007, 337 (01) :159-175
[6]   Inequalities for eigenvalues of Laplacian on domains and compact complex hypersurfaces in complex projective spaces [J].
Cheng, Qing-Ming ;
Yang, Hongcang .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2006, 58 (02) :545-561
[7]   Estimates on eigenvalues of Laplacian [J].
Cheng, QM ;
Yang, HC .
MATHEMATISCHE ANNALEN, 2005, 331 (02) :445-460
[8]   UNIVERSAL INEQUALITIES FOR THE EIGENVALUES OF LAPLACE AND SCHRODINGER OPERATORS ON SUBMANIFOLDS [J].
El Soufi, Ahmad ;
Harrell, Evans M., II ;
Ilias, Said .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 361 (05) :2337-2350
[9]   On trace identities and universal eigenvalue estimates for some partial differential operators [J].
Harrell, EM ;
Stubbe, J .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 349 (05) :1797-1809
[10]   INEQUALITIES FOR EIGENVALUES OF THE LAPLACIAN [J].
HILE, GN ;
PROTTER, MH .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1980, 29 (04) :523-538