Approximation algorithms for some parameterized counting problems

被引:0
作者
Arvind, V [1 ]
Raman, V [1 ]
机构
[1] Inst Math Sci, Madras 600113, Tamil Nadu, India
来源
ALGORITHMS AND COMPUTATION, PROCEEDINGS | 2002年 / 2518卷
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We give a randomized fixed parameter tractable algorithm to approximately count the number of copies of a k-vertex graph with bounded treewidth in an n vertex graph. As a consequence, we get randomized algorithms with running time k(O(k))n(O(1)), approximation ratio 1/k(O(k)), and error probability 2(-nO(1)) for (a) approximately counting the number of matchings of size k in an n vertex graph and (b) approximately counting the number of paths of length k in an n vertex graph. Our algorithm is based on the Karp-Luby approximate counting technique [8] applied to fixed parameter tractable problems, and the color-coding technique of Alon, Yuster and Zwick [1]. We also show some W-hardness results for parameterized exact counting problems.
引用
收藏
页码:453 / 464
页数:12
相关论文
共 15 条
[1]   COLOR-CODING [J].
ALON, N ;
YUSTER, R ;
ZWICK, U .
JOURNAL OF THE ASSOCIATION FOR COMPUTING MACHINERY, 1995, 42 (04) :844-856
[2]   A linear-time ie algorithm for finding three-decompositions of small treewidth [J].
Bodlaender, HL .
SIAM JOURNAL ON COMPUTING, 1996, 25 (06) :1305-1317
[3]  
DOWNEY R, 1998, PARAMETERIZED COMPLE
[4]  
FEIGE U, 1997, CHICAGO J THEORE MAR
[5]  
FERNAU H, IN PRESS P COCOON 20
[6]  
FLUM J, 2002, IN PRESS 43 IEEE S F
[7]  
JOHNSON T, 1998, DIRECTED TREE WIDTH
[8]   MONTE-CARLO APPROXIMATION ALGORITHMS FOR ENUMERATION PROBLEMS [J].
KARP, RM ;
LUBY, M ;
MADRAS, N .
JOURNAL OF ALGORITHMS, 1989, 10 (03) :429-448
[9]  
Khot S, 2000, LECT NOTES COMPUT SC, V1858, P137
[10]  
Kloks T., 1994, Treewidth. Computations and approximations, DOI 10.1007/BFb0045375