Data-Driven Optimal Control Using Transfer Operators

被引:0
|
作者
Das, Apurba Kumar [1 ]
Huang, Bowen [1 ]
Vaidya, Umesh [1 ]
机构
[1] Iowa State Univ, Dept Elect & Comp Engn, Ames, IA 50011 USA
基金
美国国家科学基金会;
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we propose a data-driven approach for control of nonlinear dynamical systems. The proposed data-driven approach relies on transfer Koopman and Perron-Frobenius ( P-F) operators for linear representation and control of such systems. Systematic model-based frameworks involving linear transfer P-F operator were proposed for almost everywhere stability analysis and control design of a nonlinear dynamical system in previous works [1]-[3]. Lyapunov measure can be used as a tool to provide linear programming-based computational framework for stability analysis and optimal control design of a nonlinear system. In this paper, we show that the Lyapunov measure-based framework can extended to a data-driven setting, where the finite dimensional approximation of linear transfer P-F operator and optimal control can be obtained from time-series data. We exploit the positivity and Markov property of P-F operator to provide linear programming based approach for designing an optimally stabilizing feedback controller.
引用
收藏
页码:3223 / 3228
页数:6
相关论文
共 50 条
  • [1] Data-Driven Stochastic Optimal Control With Safety Constraints Using Linear Transfer Operators
    Vaidya, Umesh
    Tellez-Castro, Duvan
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2024, 69 (04) : 2100 - 2115
  • [2] Data-driven optimal control via linear transfer operators: A convex approach
    Moyalan, Joseph
    Choi, Hyungjin
    Chen, Yongxin
    Vaidya, Umesh
    AUTOMATICA, 2023, 150
  • [3] Data-driven Optimal Control with Data Loss
    Huan, Luo
    Azuma, Shun-ich
    2024 SICE INTERNATIONAL SYMPOSIUM ON CONTROL SYSTEMS, SICE ISCS 2024, 2024, : 56 - 59
  • [4] Data-driven optimal prediction with control
    Katrutsa, Aleksandr
    Oseledets, Ivan
    Utyuzhnikov, Sergey
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2025, 143
  • [5] Data-Driven Stochastic Optimal Control Using Kernel Gradients
    Thorpe, Adam J.
    Gonzales, Jake A.
    Oishi, Meeko M. K.
    2023 AMERICAN CONTROL CONFERENCE, ACC, 2023, : 2548 - 2553
  • [6] Active Learning of Dynamics for Data-Driven Control Using Koopman Operators
    Abraham, Ian
    Murphey, Todd D.
    IEEE TRANSACTIONS ON ROBOTICS, 2019, 35 (05) : 1071 - 1083
  • [7] Data-Driven Optimal Control of Bilinear Systems
    Yuan, Zhenyi
    Cortes, Jorge
    IEEE CONTROL SYSTEMS LETTERS, 2022, 6 (2479-2484): : 2479 - 2484
  • [8] A Data-Driven Approach for Inverse Optimal Control
    Liang, Zihao
    Hao, Wenjian
    Mou, Shaoshuai
    2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC, 2023, : 3632 - 3637
  • [9] Data-driven Rollout for Deterministic Optimal Control
    Li, Yuchao
    Johansson, Karl H.
    Martensson, Jonas
    Bertsekas, Dimitri P.
    2021 60TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2021, : 2169 - 2176
  • [10] Data-driven optimal control of undulatory swimming
    Maroun, Karl
    Traore, Philippe
    Bergmann, Michel
    PHYSICS OF FLUIDS, 2024, 36 (07)