Epitaxial growth of lateral quantum dot molecules

被引:13
|
作者
Zallo, Eugenio [1 ]
Atkinson, Paola [1 ,2 ]
Wang, Lijuan [2 ]
Rastelli, Armando [1 ]
Schmidt, Oliver G. [1 ]
机构
[1] IFW Dresden, Inst Integrat Nanosci, D-01069 Dresden, Germany
[2] Max Planck Inst Festkorperforsch, D-70569 Stuttgart, Germany
来源
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS | 2012年 / 249卷 / 04期
关键词
droplet etching; molecular beam epitaxy; quantum-dot molecules; semiconducting III-V materials; SELF-ASSEMBLED NANOHOLES; SURFACE-DIFFUSION; GAAS; ISLANDS; SHAPE;
D O I
10.1002/pssb.201100772
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We present an overview and a comparison between three different methods of creating low density lateral In(Ga)As quantum dot molecules (QDMs) embedded in a GaAs matrix. Each of them is based on the use of nanoholes to control the dot nucleation site and generate the QDMs. The three methods used to create suitable nanoholes are: (1) In situ excess gallium droplet etching, where the nanohole shape is modified by overgrowth of a thin GaAs buffer to give QDM nucleation. (2) Ex situ electron-beam lithographic patterning and wet-etching, where the patterned nanohole size is critical for formation of QDMs. (3) In situ strain-selective etching of buried InAs quantum dots by AsBr3. The mechanisms of QDM formation, dependence on growth parameters, advantages and disadvantages of each technique and future challenges are discussed.
引用
收藏
页码:702 / 709
页数:8
相关论文
共 50 条
  • [31] Recent progress in epitaxial growth of III-V quantum-dot lasers on silicon substrate
    Pan, Shujie
    Cao, Victoria
    Liao, Mengya
    Lu, Ying
    Liu, Zizhuo
    Tang, Mingchu
    Chen, Siming
    Seeds, Alwyn
    Liu, Huiyun
    JOURNAL OF SEMICONDUCTORS, 2019, 40 (10)
  • [32] Intermittent growth for InAs quantum dot on GaAs(001)
    Toujyou, Takashi
    Konishi, Tomoya
    Hirayama, Motoi
    Yamaguchi, Koichi
    Tsukamoto, Shiro
    JOURNAL OF CRYSTAL GROWTH, 2020, 551
  • [33] Misfit management for reduced dislocation formation in epitaxial quantum-dot-based devices
    Gandhi, Jateen S.
    Kim, Choong-Un
    Kirk, Wiley P.
    JOURNAL OF CRYSTAL GROWTH, 2013, 364 : 169 - 177
  • [34] Quantitative monitoring of InAs quantum dot growth using X-ray diffraction
    Takahasi, Masamitu
    JOURNAL OF CRYSTAL GROWTH, 2014, 401 : 372 - 375
  • [35] Influence of crystallization temperature on InP ring-shaped quantum-dot molecules grown by droplet epitaxy
    Jevasuwan, Wipakorn
    Boonpeng, Poonyasiri
    Panyakeow, Somsak
    Ratanathammaphan, Somchai
    MICROELECTRONIC ENGINEERING, 2010, 87 (5-8) : 1416 - 1419
  • [36] Vertically stacked quantum dot pairs fabricated by nanohole filling
    Sonnenberg, D.
    Kuester, A.
    Graf, A.
    Heyn, Ch
    Hansen, W.
    NANOTECHNOLOGY, 2014, 25 (21)
  • [37] Magneto-optics of two dimensional arrays of semiconductor quantum dot molecules
    Thu, L. M.
    Voskoboynikov, O.
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2010, 42 (04) : 887 - 890
  • [38] Effective one-dimensional electronic structure of InGaAs quantum dot molecules
    Thudsalingkarnsakul, N.
    Limwongse, T.
    Siripitakchai, N.
    Panyakeow, S.
    Kanjanachuchai, S.
    MICROELECTRONIC ENGINEERING, 2008, 85 (5-6) : 1225 - 1228
  • [39] Optimization of stacking high-density quantum dot molecules for photovoltaic effect
    Laouthaiwattana, K.
    Tangmattajittakul, O.
    Suraprapapich, S.
    Thainoi, S.
    Changmuang, P.
    Kanjanachuchai, S.
    Ratanathamaphan, S.
    Panyakeow, S.
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2009, 93 (6-7) : 746 - 749
  • [40] Chirped InGaAs quantum dot molecules for broadband applications
    Patanasemakul, Nirat
    Panyakeow, Somsak
    Kanjanachuchai, Songphol
    NANOSCALE RESEARCH LETTERS, 2012, 7