Epitaxial growth of lateral quantum dot molecules

被引:13
|
作者
Zallo, Eugenio [1 ]
Atkinson, Paola [1 ,2 ]
Wang, Lijuan [2 ]
Rastelli, Armando [1 ]
Schmidt, Oliver G. [1 ]
机构
[1] IFW Dresden, Inst Integrat Nanosci, D-01069 Dresden, Germany
[2] Max Planck Inst Festkorperforsch, D-70569 Stuttgart, Germany
来源
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS | 2012年 / 249卷 / 04期
关键词
droplet etching; molecular beam epitaxy; quantum-dot molecules; semiconducting III-V materials; SELF-ASSEMBLED NANOHOLES; SURFACE-DIFFUSION; GAAS; ISLANDS; SHAPE;
D O I
10.1002/pssb.201100772
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We present an overview and a comparison between three different methods of creating low density lateral In(Ga)As quantum dot molecules (QDMs) embedded in a GaAs matrix. Each of them is based on the use of nanoholes to control the dot nucleation site and generate the QDMs. The three methods used to create suitable nanoholes are: (1) In situ excess gallium droplet etching, where the nanohole shape is modified by overgrowth of a thin GaAs buffer to give QDM nucleation. (2) Ex situ electron-beam lithographic patterning and wet-etching, where the patterned nanohole size is critical for formation of QDMs. (3) In situ strain-selective etching of buried InAs quantum dots by AsBr3. The mechanisms of QDM formation, dependence on growth parameters, advantages and disadvantages of each technique and future challenges are discussed.
引用
收藏
页码:702 / 709
页数:8
相关论文
共 50 条
  • [11] Gate-controlled electron g-factor in lateral quantum dot molecules
    Ribeiro-Santos, D., Jr.
    Qu, Fanyao
    Morais, P. C.
    Lopez-Richard, V.
    Marques, G. E.
    JOURNAL OF APPLIED PHYSICS, 2011, 110 (12)
  • [12] Wafer-scale epitaxial modulation of quantum dot density
    Bart, N.
    Dangel, C.
    Zajac, P.
    Spitzer, N.
    Ritzmann, J.
    Schmidt, M.
    Babin, H. G.
    Schott, R.
    Valentin, S. R.
    Scholz, S.
    Wang, Y.
    Uppu, R.
    Najer, D.
    Loebl, M. C.
    Tomm, N.
    Javadi, A.
    Antoniadis, N. O.
    Midolo, L.
    Mueller, K.
    Warburton, R. J.
    Lodahl, P.
    Wieck, A. D.
    Finley, J. J.
    Ludwig, A.
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [13] Controlling the formation of quantum dot pairs using nanohole templates
    Zallo, Eugenio
    Atkinson, Paola
    Rastelli, Armando
    Schmidt, Oliver G.
    JOURNAL OF CRYSTAL GROWTH, 2012, 338 (01) : 232 - 238
  • [14] Ordering of quantum dot molecules by self-organization
    Von Lippen, T
    Nötzel, R
    Hamhuis, GJ
    Wolter, JH
    JOURNAL OF CRYSTAL GROWTH, 2005, 278 (1-4) : 88 - 93
  • [15] Growth and temperature dependent photoluminescence of InGaAs quantum dot chains
    Yang, Haeyeon
    Kim, Dong-Jun
    Colton, John S.
    Park, Tyler
    Meyer, David
    Jones, Aaron M.
    Thalman, Scott
    Smith, Dallas
    Clark, Ken
    Brown, Steve
    APPLIED SURFACE SCIENCE, 2014, 296 : 8 - 14
  • [16] Self-assembled lateral InAs quantum dot molecules: Dot ensemble control and polarization-dependent photoluminescence
    Suraprapapich, S.
    Kanjanachuchai, S.
    Thainoi, S.
    Panyakeow, S.
    MICROELECTRONIC ENGINEERING, 2006, 83 (4-9) : 1526 - 1529
  • [17] Mechanics of Quantum-Dot Self-Organization by Epitaxial Growth on Small Areas
    Kukta, Robert V.
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2010, 77 (04): : 1 - 6
  • [18] Self-assembled InAs lateral quantum dot molecules growth on (001) GaAs by thin-capping-and-regrowth MBE technique
    Suraprapapich, S.
    Thainoi, S.
    Kanjanachuchai, S.
    Panyakeow, S.
    NANOSCIENCE AND TECHNOLOGY, PTS 1 AND 2, 2007, 121-123 : 395 - 399
  • [19] Coupling effects in quantum dot molecules
    Dvoyan, K. G.
    Tshantshapanyan, A. A.
    Hayrapetyan, D. B.
    Kazaryan, E. M.
    Wang, Zh. M.
    Salamo, G. J.
    PHOTONICS AND MICRO- AND NANO-STRUCTURED MATERIALS 2011, 2012, 8414
  • [20] As flux dependence on RHEED transients during InAs quantum dot growth
    Shimomura, K.
    Shirasaka, T.
    Tex, D. M.
    Kamiya, I.
    JOURNAL OF CRYSTAL GROWTH, 2013, 378 : 41 - 43