Interpretation of radial position data in two-component navigation and gravimetric systems

被引:0
作者
Devyatisil'nyi, A. S. [1 ,2 ]
Chislov, K. A. [1 ]
机构
[1] Russian Acad Sci IAPU DVO RAN, Far Eastern Branch, Inst Automat & Control Proc, Vladivostok, Russia
[2] Far Eastern Fed Univ, Vladivostok, Russia
关键词
inertial navigation; gyroscope; newtonmeter; radial correction; inverse problem;
D O I
10.1007/s11018-012-0008-x
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A method is proposed for constructing equations for functional algorithms for correction of two-component inertial navigation systems that is asymptotically stable with respect to the dynamic group of equations. Results of numerical simulations are presented.
引用
收藏
页码:603 / 608
页数:6
相关论文
共 9 条
[1]  
Andreev V. D., 1967, THEORY INERTIAL NAVI
[2]  
Broxmeyer C. F., 1967, INERTIAL NAVIGATION
[3]  
[Девятисильный A.С. Devyatisil'ny A.S.], 2008, [Измерительная техника, Measurement Techniques, Izmeritel'naya tekhnika], P8
[4]   A gravimetric two-component inertial system [J].
Devyatisil'nyi, A. S. ;
Chislov, K. A. .
MEASUREMENT TECHNIQUES, 2008, 51 (02) :120-123
[5]  
Devyatisil'nyi A. S., 1997, KOSM ISSLED, V35, P99
[6]  
Devyatisil'nyi A. S., 2004, IZV RAN TEOR SIST UP, P101
[7]  
Devyatisil'nyi A. S., 2010, METROLOGIYA, P3
[8]   MODEL OF GRAVIMETRIC SATELLITE-INERTIAL NAVIGATION SYSTEM INTEGRATED ON THE BASIS OF AN INTERPRETATION OF THE D'ALEMBERT PRINCIPLE [J].
Devyatisilnyi, A. S. ;
Chislov, K. A. .
MEASUREMENT TECHNIQUES, 2011, 53 (12) :1316-1321
[9]  
Kalman R. E., 1969, TOPICS MATH SYSTEM T