PARTIAL CONTROL OF TRANSIENT CHAOS IN ELECTRONIC CIRCUITS

被引:10
作者
Wagemakers, Alexandre [1 ]
Zambrano, Samuel [1 ]
Sanjuan, Miguel A. F. [1 ]
机构
[1] Univ Rey Juan Carlos, Dept Fis, Nonlinear Dynam Chaos & Complex Syst Grp, Madrid 28933, Spain
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2012年 / 22卷 / 02期
关键词
Partial control of chaos; analog circuit; transient chaos; DYNAMICAL-SYSTEMS; TENT MAPS; CRISIS;
D O I
10.1142/S0218127412500320
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present an analog circuit implementation of the novel partial control method, that is able to sustain chaotic transient dynamics. The electronic circuit simulates the dynamics of the one-dimensional slope-three tent map, for which the trajectories diverge to infinity for nearly all the initial conditions after behaving chaotically for a while. This is due to the existence of a nonattractive chaotic set: a chaotic saddle. The partial control allows one to keep the trajectories close to the chaotic saddle, even if the control applied is smaller than the effect of the applied noise, introduced into the system. Furthermore, we also show here that similar results can be implemented on a circuit that simulates a horseshoe-like map, which is a simple extension of the previous one. This encouraging result validates the theory and opens new perspectives for the application of this technique to systems with higher dimensions and continuous time dynamics.
引用
收藏
页数:10
相关论文
共 19 条
[1]   Controlling chaotic transients:: Yorke's game of survival -: art. no. 016203 [J].
Aguirre, J ;
d'Ovidio, F ;
Sanjuán, MAF .
PHYSICAL REVIEW E, 2004, 69 (01) :5
[2]   Fractal structures in nonlinear dynamics [J].
Aguirre, Jacobo ;
Viana, Ricardo L. ;
Sanjuan, Miguel A. F. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :333-386
[3]  
Alligood K. T., 1996, CHAOS
[4]   Poincare recurrences from the perspective of transient chaos [J].
Altmann, Eduardo G. ;
Tel, Tamas .
PHYSICAL REVIEW LETTERS, 2008, 100 (17)
[5]  
Aziz-Alaoui M. A., 2009, DIRECTIONS CHAOS, P149
[6]   Controlling transient chaos in deterministic flows with applications to electrical power systems and ecology [J].
Dhamala, M ;
Lai, YC .
PHYSICAL REVIEW E, 1999, 59 (02) :1646-1655
[7]   CHAOTIC ATTRACTORS IN CRISIS [J].
GREBOGI, C ;
OTT, E ;
YORKE, JA .
PHYSICAL REVIEW LETTERS, 1982, 48 (22) :1507-1510
[8]   Real-time finite difference bifurcation diagrams from analog electronic circuits [J].
Hellen, EH .
AMERICAN JOURNAL OF PHYSICS, 2004, 72 (04) :499-502
[9]   Preserving transient chaos [J].
Kapitaniak, T ;
Brindley, J .
PHYSICS LETTERS A, 1998, 241 (1-2) :41-45
[10]   CONTROLLING CHAOS [J].
OTT, E ;
GREBOGI, C ;
YORKE, JA .
PHYSICAL REVIEW LETTERS, 1990, 64 (11) :1196-1199