Influence of microstructure on the cross-plane oxygen ion conductivity of yttria stabilized zirconia thin films

被引:38
作者
Schlupp, Meike V. F. [1 ]
Scherrer, Barbara [1 ]
Ma, Huan [1 ]
Grolig, Jan G. [1 ]
Martynczuk, Julia [1 ]
Prestat, Michel [1 ]
Gauckler, Ludwig J. [1 ]
机构
[1] ETH, CH-8093 Zurich, Switzerland
来源
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE | 2012年 / 209卷 / 08期
基金
瑞士国家科学基金会;
关键词
chemical vapor deposition; fuel cells; ionic conduction; nanocrystalline materials; oxides; spray pyrolysis; OXIDE FUEL-CELLS; ELECTRICAL-CONDUCTIVITY; DOPED ZIRCONIA; GRAIN-BOUNDARIES; YSZ FILM; ENHANCEMENT; MEMBRANES;
D O I
10.1002/pssa.201228248
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The electrical cross-plane conductivity of 8?mol% yttria stabilized zirconia (YSZ) thin films prepared by different deposition techniques, namely aerosol assisted chemical vapor deposition, wet spray pyrolysis (SP), and pulsed laser deposition (PLD), is correlated with their microstructure. Depending on deposition technique and process conditions, microstructures ranging from amorphous to randomly oriented nanocrystalline or columnar with preferred (111) orientation are obtained. Cross-plane AC impedance measurements of these thin films show that the oxygen ion conductivity of randomly oriented nanocrystalline samples is determined by the grain boundaries, which show significantly lower transport properties than the grain interior. In columnar microstructures, the conductivity is determined by ionic transport through the grains only. The same conduction behavior is found for amorphous and randomly oriented microstructures with grain sizes between 3?nm and 9?nm, indicating that no true size effects occur in 8?mol% YSZ. Grain and grain boundary conductivity determined for nanocrystalline 8?mol% yttria stabilized zirconia thin films of different microstructures.
引用
收藏
页码:1414 / 1422
页数:9
相关论文
共 54 条
[11]   Electrical properties of the grain boundaries of oxygen ion conductors: Acceptor-doped zirconia and ceria [J].
Guo, X ;
Waser, R .
PROGRESS IN MATERIALS SCIENCE, 2006, 51 (02) :151-210
[12]   Grain boundary blocking effect in zirconia: A Schottky barrier analysis [J].
Guo, X ;
Maier, J .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2001, 148 (03) :E121-E126
[13]   Can we achieve significantly higher ionic conductivity in nanostructured zirconia? [J].
Guo, Xin .
SCRIPTA MATERIALIA, 2011, 65 (02) :96-101
[14]   Microstructure and electrical conductivity of YSZ thin films prepared by pulsed laser deposition [J].
Heiroth, S. ;
Lippert, Th. ;
Wokaun, A. ;
Doebeli, M. .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2008, 93 (03) :639-643
[15]   High-performance ultrathin solid oxide fuel cells for low-temperature operation [J].
Huang, Hong ;
Nakamura, Masafumi ;
Su, Peichen ;
Fasching, Rainer ;
Saito, Yuji ;
Prinz, Fritz B. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2007, 154 (01) :B20-B24
[16]   A brief review of the ionic conductivity enhancement for selected oxide electrolytes [J].
Hui, Shiqiang ;
Roller, Justin ;
Yick, Sing ;
Zhang, Xinge ;
Deces-Petit, Cyrille ;
Xie, Yongsong ;
Maric, Radenka ;
Ghosh, Dave .
JOURNAL OF POWER SOURCES, 2007, 172 (02) :493-502
[17]   Microstructures of CGO and YSZ thin films by pulsed laser deposition [J].
Infortuna, Anna ;
Harvey, Ashley S. ;
Gauckler, Ludwig J. .
ADVANCED FUNCTIONAL MATERIALS, 2008, 18 (01) :127-135
[18]   Electrical conductivity of YSZ film grown by pulsed laser deposition [J].
Joo, Jong Hoon ;
Choi, Gyeong Man .
SOLID STATE IONICS, 2006, 177 (11-12) :1053-1057
[19]   Enhanced ionic conductivity and phase meta-stability of nano-sized thin film yttria-doped zirconia (YDZ) [J].
Jung, WooChul ;
Hertz, Joshua L. ;
Tuller, Harry L. .
ACTA MATERIALIA, 2009, 57 (05) :1399-1404
[20]   High temperature conductivity studies on nanoscale yttria-doped zirconia thin films and size effects [J].
Karthikeyan, Annamalai ;
Chang, Chia-Lin ;
Ramanathan, Shriram .
APPLIED PHYSICS LETTERS, 2006, 89 (18)