Data-Driven Dynamic Model Identification for Synchronous Generators

被引:2
|
作者
Wang, Zhengyu [1 ]
Fan, Tingling [1 ]
Miao, Zhixin [1 ]
机构
[1] Univ S Florida, Dept Elect Engn, Tampa, FL 33620 USA
关键词
Data-driven; ARX; reduced-order model; parameter identification; PMU measurement;
D O I
10.1109/naps46351.2019.9000184
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The objective of this paper is to find parameters of dynamic synchronous generator models through phasor measurement unit (PMU) data. Two estimation models are assumed. The first is an input/output model with electric power measurement as input and frequency as output. The second model assumes a single machine infinite bus system and the measurements are treated as outputs only. For these two models, various system identification methods are applied to achieve the goal, including autoregression exogenous (ARX)-based least squares estimation (LSE), subspace identification through n4sid, and linear grey-box model identification. Numerical examples are given to show the effectiveness of dynamic parameter estimation.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Synergy of Model-driven and Data-driven Approaches in a Dynamic Network Loading Problem
    Kurtc, Valentina
    Prokhorov, Andrey
    TRAFFIC AND GRANULAR FLOW 2022, TGF 2022, 2024, 443 : 487 - 494
  • [42] A fast data-driven topology identification method for dynamic state estimation applications
    Gotti, Davide
    Ledesma, Pablo
    Amaris, Hortensia
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2023, 147
  • [43] Iterative dynamic linearization and identification of a nonlinear learning controller: A data-driven approach
    Lin, Na
    Chi, Ronghu
    Huang, Biao
    Hou, Zhongsheng
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2019, 356 (13): : 7009 - 7027
  • [44] Multi-level coupling of dynamic data-driven experimentation with material identification
    Michopoulos, John G.
    Furukawa, Tomonari
    COMPUTATIONAL SCIENCE - ICCS 2007, PT 1, PROCEEDINGS, 2007, 4487 : 1180 - 1188
  • [45] A data-driven dynamic repositioning model in bicycle-sharing systems
    Zhang, Jie
    Meng, Meng
    Wong, Yiik Diew
    Ieromonachou, Petros
    Wang, David Z. W.
    INTERNATIONAL JOURNAL OF PRODUCTION ECONOMICS, 2021, 231
  • [46] Data-driven model identification of guided wave propagation in composite structures
    da Silva, Samuel
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2018, 40 (11)
  • [47] Data-driven model reference control design by prediction error identification
    Campestrini, Luciola
    Eckhard, Diego
    Bazanella, Alexandre Sanfelice
    Gevers, Michel
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2017, 354 (06): : 2628 - 2647
  • [48] Data-driven Buck converter model identification method with missing outputs
    Hou, Jie
    Zhang, Xinhua
    Wang, Huiming
    Wang, Shiwei
    IET CONTROL THEORY AND APPLICATIONS, 2024, 18 (14): : 1825 - 1835
  • [49] Controller identification for data-driven model-reference distributed control
    Steentjes, Tom R., V
    Lazar, Mircea
    Van den Hof, Paul M. J.
    2021 EUROPEAN CONTROL CONFERENCE (ECC), 2021, : 2358 - 2363
  • [50] Data-driven learning methods for industrial robot stiffness model identification
    Smart Manufacturing System R&D Department, Korea Institute of Industrial Technology , Korea, Republic of
    Eur. Soc. Precis. Eng. Nanotechnol., Conf. Proc. - Int. Conf. Exhib., EUSPEN, 1600, (325-326):