Weighted Variable Sobolev Spaces and Capacity

被引:32
|
作者
Aydin, Ismail [1 ]
机构
[1] Sinop Univ, Fac Arts & Sci, Dept Math, TR-57000 Sinop, Turkey
来源
JOURNAL OF FUNCTION SPACES AND APPLICATIONS | 2012年
关键词
NORM INEQUALITIES; LEBESGUE SPACES; EXPONENT; OPERATORS;
D O I
10.1155/2012/132690
中图分类号
学科分类号
摘要
We define weighted variable Sobolev capacity and discuss properties of capacity in the space W-1,W-p(.) (R-n,w). We investigate the role of capacity in the pointwise definition of functions in this space if the Hardy-Littlewood maximal operator is bounded on the space W-1,W-p(.) (R-n,w). Also it is shown the relation between the Sobolev capacity and Bessel capacity.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Capacity of rings and mappings generate embeddings of Sobolev spaces
    Menovschikov, Alexander
    Ukhlov, Alexander
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 531 (01)
  • [32] Banach space structure of weighted Fock-Sobolev spaces
    He, Li
    Cao, Guangfu
    FRONTIERS OF MATHEMATICS IN CHINA, 2016, 11 (03) : 693 - 703
  • [33] Boundedness of fractional integrals on weighted Herz spaces with variable exponent
    Izuki, Mitsuo
    Noi, Takahiro
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016,
  • [34] KATO-PONCE INEQUALITIES ON WEIGHTED AND VARIABLE LEBESGUE SPACES
    Cruz-Uribe, David
    Naibo, Virginia
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2016, 29 (9-10) : 801 - 836
  • [35] Strong and weak associativity of weighted Sobolev spaces of the first order
    Stepanov, V. D.
    Ushakova, E. P.
    RUSSIAN MATHEMATICAL SURVEYS, 2023, 78 (01) : 165 - 202
  • [36] AN INTRINSIC SQUARE FUNCTION ON WEIGHTED HERZ SPACES WITH VARIABLE EXPONENT
    Izuki, Mitsuo
    Noi, Takahiro
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2017, 11 (03): : 799 - 816
  • [37] Approximation by trigonometric polynomials in the variable exponent weighted Morrey spaces
    Cakir, Z.
    Aykol, C.
    Guliyev, V. S.
    Serbetci, A.
    CARPATHIAN MATHEMATICAL PUBLICATIONS, 2021, 13 (03) : 750 - 763
  • [38] CHARACTERIZATIONS OF SOBOLEV SPACES WITH VARIABLE EXPONENT VIA AVERAGES ON BALLS
    Xu, Jingshi
    TOHOKU MATHEMATICAL JOURNAL, 2020, 72 (04) : 569 - 579
  • [39] The maximal operator in weighted variable spaces LP(•)
    Kokilashvili, Vakhtang
    Samko, Natasha
    Samko, Stefan
    JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2007, 5 (03): : 299 - 317
  • [40] Characterizations of Weighted Besov Spaces with Variable Exponents
    Wang, Sheng Rong
    Guo, Peng Fei
    Xu, Jing Shi
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2024, 40 (11) : 2855 - 2878