Weighted Variable Sobolev Spaces and Capacity

被引:34
作者
Aydin, Ismail [1 ]
机构
[1] Sinop Univ, Fac Arts & Sci, Dept Math, TR-57000 Sinop, Turkey
来源
JOURNAL OF FUNCTION SPACES AND APPLICATIONS | 2012年
关键词
NORM INEQUALITIES; LEBESGUE SPACES; EXPONENT; OPERATORS;
D O I
10.1155/2012/132690
中图分类号
学科分类号
摘要
We define weighted variable Sobolev capacity and discuss properties of capacity in the space W-1,W-p(.) (R-n,w). We investigate the role of capacity in the pointwise definition of functions in this space if the Hardy-Littlewood maximal operator is bounded on the space W-1,W-p(.) (R-n,w). Also it is shown the relation between the Sobolev capacity and Bessel capacity.
引用
收藏
页数:17
相关论文
共 26 条
[1]  
[Anonymous], GRADUATE STUDIES MAT
[2]  
[Anonymous], 1993, OXFORD MATH MONOGR
[3]  
[Anonymous], 2006, Journal of Function Spaces and Applications
[4]  
[Anonymous], 2003, J. Funct. Spaces Appl
[5]  
[Anonymous], MUCKENHOUPT WEIGHTS
[6]  
[Anonymous], 2003, Georgian Math. J.
[7]  
[Anonymous], 1996, FUNCTION SPACES POTE
[8]  
Choquet G., 1954, Ann. Institute. Fourier (Grenoble), V5, P131, DOI DOI 10.5802/AIF.53
[9]  
Diening L, 2004, MATH INEQUAL APPL, V7, P245
[10]  
Diening L., 2004, FSDONA04 Proc, V66, P38