Simulation of electromagnetic scattering with stationary or accelerating targets

被引:3
作者
Funaro, Daniele [1 ]
Kashdan, Eugene [2 ]
机构
[1] Univ Modena & Reggio Emilia, Dipartimento Fis Informat & Matemat, I-41125 Modena, Italy
[2] Univ Coll Dublin, Sch Math Sci, Dublin 4, Ireland
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS C | 2015年 / 26卷 / 07期
关键词
Numerical simulation; scattering; electromagnetism; light-matter interaction; solitary waves; MAXWELLS EQUATIONS; CONSERVATION; MEDIA;
D O I
10.1142/S0129183115500758
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The scattering of electromagnetic waves by an obstacle is analyzed through a set of partial differential equations combining the Maxwell's model with the mechanics of fluids. Solitary type EM waves, having compact support, may easily be modeled in this context since they turn out to be explicit solutions. From the numerical viewpoint, the interaction of these waves with a material body is examined. Computations are carried out via a parallel high-order finite-differences code. Due to the presence of a gradient of pressure in the model equations, waves hitting the obstacle may impart acceleration to it. Some explicative 2D dynamical configurations are then studied, enabling the simulation of photon-particle iterations through classical arguments.
引用
收藏
页数:16
相关论文
共 31 条
[1]   Non-linear PML equations for time dependent electromagnetics in three dimensions [J].
Abarbanel, S. ;
Gottlieb, D. ;
Hesthaven, J. S. .
JOURNAL OF SCIENTIFIC COMPUTING, 2006, 28 (2-3) :125-137
[2]   A mathematical analysis of the PML method [J].
Abarbanel, S ;
Gottlieb, D .
JOURNAL OF COMPUTATIONAL PHYSICS, 1997, 134 (02) :357-363
[3]   Optical trapping and manipulation of neutral particles using lasers [J].
Ashkin, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (10) :4853-4860
[4]   ON A FINITE-ELEMENT METHOD FOR SOLVING THE 3-DIMENSIONAL MAXWELL EQUATIONS [J].
ASSOUS, F ;
DEGOND, P ;
HEINTZE, E ;
RAVIART, PA ;
SEGRE, J .
JOURNAL OF COMPUTATIONAL PHYSICS, 1993, 109 (02) :222-237
[5]   A PERFECTLY MATCHED LAYER FOR THE ABSORPTION OF ELECTROMAGNETIC-WAVES [J].
BERENGER, JP .
JOURNAL OF COMPUTATIONAL PHYSICS, 1994, 114 (02) :185-200
[6]  
Bossavit A., 1998, Computational Electromagnetism
[7]   The local discontinuous Galerkin method for time-dependent convection-diffusion systems [J].
Cockburn, B ;
Shu, CW .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 35 (06) :2440-2463
[8]  
Funaro D., 2008, Electromagnetism and Structure of Matter
[9]  
Funaro D., ARXIV09114848V1
[10]  
Funaro D., ARXIV12063110V1