Large deviations analysis for the detection of 2D hidden Gauss-Markov random fields using sensor networks

被引:1
|
作者
Sung, Youngchul [1 ]
Poor, H. Vincent [2 ]
Yu, Heejung [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Elect Engn, Taejon 305701, South Korea
[2] Princeton Univ, Dept Elect Engn, Princeton, NJ 08544 USA
来源
2008 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-12 | 2008年
基金
美国国家科学基金会;
关键词
Neyman-Pearson detection; error exponent; GMRF;
D O I
10.1109/ICASSP.2008.4518504
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
The detection of hidden two-dimensional Gauss-Markov random fields using sensor networks is considered. Under a conditional autoregressive model, the error exponent for the Neyman-Pearson detector satisfying a fixed level constraint is obtained using the large deviations principle. For a symmetric first order autoregressive model, the error exponent is given explicitly in term of the SNR and an edge dependence factor (field correlation). The behavior of the error exponent as a function of correlation strength is seen to divide into two regions depending on the value of the SNR. At high SNR, uncorrelated observations maximize the error exponent for a given SNF, whereas there is non-zero optimal correlation at low SNR. Based on the error exponent, the energy efficiency (defined as the ratio of the total information gathered to the total energy required) of ad hoc sensor network for detection is examined for two sensor deployment models: an infinite area model and and infinite density model. For a fixed sensor density, the energy efficiency diminishes to zero at rate O(area(-1/2)) as the area is increased. On the other hand, non-zero efficiency is possible for increasing density depending on the behavior of the physical correlation as a function of the link length.
引用
收藏
页码:3893 / +
页数:2
相关论文
共 50 条
  • [1] COMPRESSED SENSING OF GAUSS-MARKOV RANDOM FIELDS WITH WIRELESS SENSOR NETWORKS
    Oka, Anand
    Lampe, Lutz
    2008 IEEE SENSOR ARRAY AND MULTICHANNEL SIGNAL PROCESSING WORKSHOP, 2008, : 257 - 260
  • [2] Quickest Detection of Gauss-Markov Random Fields
    Heydari, Javad
    Tajer, Ali
    Poor, H. Vincent
    2015 53RD ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING (ALLERTON), 2015, : 808 - 814
  • [3] Identification of 2-D noncausal Gauss-Markov random fields
    Cusani, R
    Baccarelli, E
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1996, 44 (03) : 759 - 764
  • [4] A Smoother-Predictor of 3D Hidden Gauss-Markov Random Fields for Weather Forecast
    Borri, Alessandro
    Carravetta, Francesco
    White, Langford B.
    2019 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC), 2019, : 3331 - 3336
  • [5] Detection of Gauss-Markov Random Fields With Nearest-Neighbor Dependency
    Anandkumar, Animashree
    Tong, Lang
    Swami, Ananthram
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2009, 55 (02) : 816 - 827
  • [6] Multichannel image restoration using compound Gauss-Markov random fields
    Molina, R
    Mateos, J
    Katsaggelos, AK
    2000 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, PROCEEDINGS, VOLS I-VI, 2000, : 141 - 144
  • [7] Classification of hyperspectral spatial/spectral patterns using Gauss-Markov random fields
    Smartt, Heidi A.
    Tyo, J. Scott
    ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY XII PTS 1 AND 2, 2006, 6233
  • [8] Bayesian multichannel image restoration using compound Gauss-Markov random fields
    Molina, R
    Mateos, J
    Katsaggelos, AK
    Vega, M
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2003, 12 (12) : 1642 - 1654
  • [9] Optimal Distortion-Power Tradeoffs in Sensor Networks: Gauss-Markov Random Processes
    Liu, Nan
    Ulukus, Sennur
    2006 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, VOLS 1-12, 2006, : 1543 - 1548
  • [10] Wavelet-based despeckling of SAR images using Gauss-Markov random fields
    Gleich, Dusan
    Datcu, Mihai
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2007, 45 (12): : 4127 - 4143