Error estimates of finite difference schemes for the Korteweg-de Vries equation

被引:13
作者
Courtes, Clementine [1 ]
Lagoutiere, Frederic [2 ]
Rousset, Frederic [1 ]
机构
[1] Univ Paris Saclay, Lab Math Orsay, Univ Paris Sud, CNRS, F-91405 Orsay, France
[2] Univ Claude Bernard Lyon 1, Univ Lyon, CNRS UMR 5208, Inst Camille Jordan, F-69622 Villeurbanne, France
关键词
numerical convergence; Korteweg-de Vries equation; error estimates; finite difference schemes; GALERKIN-METHODS; KDV; CONVERGENCE; SYSTEMS;
D O I
10.1093/imanum/dry082
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article deals with the numerical analysis of the Cauchy problem for the Korteweg-de Vries equation with a finite difference scheme. We consider the explicit Rusanov scheme for the hyperbolic flux term and a 4-point theta-scheme for the dispersive term. We prove the convergence under a hyperbolic Courant- Friedrichs-Lewy condition when theta >= 1/2 and under an 'Airy' Courant-Friedrichs-Lewy condition when theta >= 1/2. More precisely, we get a first-order convergence rate for strong solutions in the Sobolev space H-s (R), s >= 6 and extend this result to the nonsmooth case for initial data in H-s (R), with s >= 3/4, at the price of a reduction in the convergence order. Numerical simulations indicate that the orders of convergence may be optimal when s >= 3.
引用
收藏
页码:628 / 685
页数:58
相关论文
共 36 条
  • [1] On symplectic and multisymplectic schemes for the KdV equation
    Ascher, UM
    McLachlan, RI
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2005, 25 (01) : 83 - 104
  • [2] BAKER GA, 1983, MATH COMPUT, V40, P419, DOI 10.1090/S0025-5718-1983-0689464-4
  • [3] CONSERVATIVE, DISCONTINUOUS GALERKIN-METHODS FOR THE GENERALIZED KORTEWEG-DE VRIES EQUATION
    Bona, J. L.
    Chen, H.
    Karakashian, O.
    Xing, Y.
    [J]. MATHEMATICS OF COMPUTATION, 2013, 82 (283) : 1401 - 1432
  • [4] Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. 1: Derivation and linear theory
    Bona, JL
    Chen, M
    Saut, JC
    [J]. JOURNAL OF NONLINEAR SCIENCE, 2002, 12 (04) : 283 - 318
  • [5] INITIAL-VALUE PROBLEM FOR KORTEWEG-DEVRIES EQUATION
    BONA, JL
    SMITH, R
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1975, 278 (1287): : 555 - 601
  • [6] Bourgain J., 1993, Geom. Funct. Anal, V3, P107, DOI [DOI 10.1007/BF01895688, 10.1007/BF01896020, DOI 10.1007/BF01896021]
  • [7] BURTEA C, 2018, COMMUN MATH SCI
  • [8] ERROR ESTIMATE FOR TIME-EXPLICIT FINITE VOLUME APPROXIMATION OF STRONG SOLUTIONS TO SYSTEMS OF CONSERVATION LAWS
    Cances, Clement
    Mathis, Helene
    Seguin, Nicolas
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (02) : 1263 - 1287
  • [9] Sharp global well-posedness for KDV and modified KDV on R and T
    Colliander, J
    Keel, M
    Staffilani, G
    Takaoka, H
    Tao, T
    [J]. JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 16 (03) : 705 - 749
  • [10] COURTES C, 2016, SPRINGER P MATH STAT, V236, P413