Floating-Point Format Inference in Mixed-Precision

被引:7
作者
Martel, Matthieu [1 ]
机构
[1] Univ Perpignan, Laboratoire Math & Phys LAMPS, Via Domitia, Perpignan, France
来源
NASA FORMAL METHODS (NFM 2017) | 2017年 / 10227卷
关键词
D O I
10.1007/978-3-319-57288-8_16
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We address the problem of determining the minimal precision on the inputs and on the intermediary results of a program containing floating-point computations in order to ensure a desired accuracy on the outputs. The first originality of our approach is to combine forward and backward static analyses, done by abstract interpretation. The backward analysis computes the minimal precision needed for the inputs and intermediary values in order to have a desired accuracy on the results, specified by the user. The second originality is to express our analysis as a set of constraints made of first order predicates and affine integer relations only, even if the analyzed programs contain non-linear computations. These constraints can be easily checked by an SMT Solver. The information collected by our analysis may help to optimize the formats used to represent the values stored in the floating-point variables of programs. Experimental results are presented.
引用
收藏
页码:230 / 246
页数:17
相关论文
共 29 条
[1]  
ANSI/IEEE, 2008, IEEE Standard for Binary Floating-point Arithmetic.
[2]   Automatic Detection of Floating-Point Exceptions [J].
Barr, Earl T. ;
Thanh Vo ;
Vu Le ;
Su, Zhendong .
ACM SIGPLAN NOTICES, 2013, 48 (01) :549-560
[3]   Satisfiability modulo theories [J].
Barrett, Clark ;
Sebastiani, Roberto ;
Seshia, Sanjit A. ;
Tinelli, Cesare .
Frontiers in Artificial Intelligence and Applications, 2009, 185 (01) :825-885
[4]  
BjOrner N., 2015, P 21 INT C TOOLS ALG, P194, DOI [DOI 10.1007/978-3-662-46681-0, 10.1007/978-3-662-46681-0_14, DOI 10.1007/978-3-662-46681-0_14]
[5]   Rigorous Floating-Point Mixed-Precision Tuning [J].
Chiang, Wei-Fan ;
Baranowski, Mark ;
Briggs, Ian ;
Solovyev, Alexey ;
Gopalakrishnan, Ganesh ;
Rakamaric, Zvonimir .
ACM SIGPLAN NOTICES, 2017, 52 (01) :300-315
[6]  
Cousot P, 1977, POPL, P238, DOI [DOI 10.1145/512950.512973, 10.1145/512950.512973]
[7]   A gentle introduction to formal verification of computer systems by abstract interpretation [J].
Cousot, Patrick ;
Cousot, Radhia .
LOGICS AND LANGUAGES FOR RELIABILITY AND SECURITY, 2010, 25 :1-29
[8]  
Damouche Nasrine, 2015, Formal Methods for Industrial Critical Systems. 20th International Workshop, FMICS 2015. Proceedings: LNCS 9128, P31, DOI 10.1007/978-3-319-19458-5_3
[9]   Sound Compilation of Reals [J].
Darulova, Eva ;
Kuncak, Viktor .
ACM SIGPLAN NOTICES, 2014, 49 (01) :235-248
[10]   Z3: An efficient SMT solver [J].
de Moura, Leonardo ;
Bjorner, Nikolaj .
TOOLS AND ALGORITHMS FOR THE CONSTRUCTION AND ANALYSIS OF SYSTEMS, 2008, 4963 :337-340