An Energy Conserving Numerical Scheme for the Klein-Gordon Equation with Cubic Nonlinearity

被引:2
作者
Alzaleq, Lewa [1 ]
Manoranjan, Valipuram [2 ]
机构
[1] Al al Bayt Univ, Dept Math, Fac Sci, Mafraq 25113, Jordan
[2] Washington State Univ, Dept Math & Stat, Pullman, WA 99164 USA
关键词
Klein-Gordon equation; finite difference scheme; discrete energy; convergence; stability; TIME;
D O I
10.3390/fractalfract6080461
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we develop a numerical scheme that conserves the discrete energy for solving the Klein-Gordon equation with cubic nonlinearity. We prove theoretically that our scheme conserves not just discrete energy, but also other energy-like discrete quantities. In addition, we prove the convergence and the stability of the scheme. Finally, we present some numerical simulations to demonstrate the performance of our energy-conserving scheme.
引用
收藏
页数:18
相关论文
共 34 条
[1]   Numerical solution of non-linear Klein-Gordon equations by variational iteration method [J].
Abbasbandy, Saeid .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2007, 70 (07) :876-881
[2]  
Alzaleq L., 2016, THESIS WASHINGTON ST
[3]   Qualitative analysis and exact traveling wave solutions for the Klein-Gordon equation with quintic nonlinearity [J].
Alzaleq, Lewa' ;
Manoranjan, Valipuram .
PHYSICA SCRIPTA, 2019, 94 (08)
[4]   Numerical Treatment of Time-Fractional Klein-Gordon Equation Using Redefined Extended Cubic B-Spline Functions [J].
Amin, Muhammad ;
Abbas, Muhammad ;
Iqbal, Muhammad Kashif ;
Baleanu, Dumitru .
FRONTIERS IN PHYSICS, 2020, 8
[5]   The Homotopy-Perturbation Method for Solving Klein-Gordon-Type Equations with Unbounded Right-Hand Side [J].
Aslanov, Afgan .
ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2009, 64 (1-2) :149-152
[6]   SINE-GORDON EQUATION AS A MODEL CLASSICAL FIELD-THEORY [J].
CAUDREY, PJ ;
EILBECK, JC ;
GIBBON, JD .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1975, B 25 (02) :497-512
[7]   Two Energy Conserving Numerical Schemes for the Klein-Gordon-Zakharov Equations [J].
Chen, Juan ;
Zhang, Luming .
JOURNAL OF APPLIED MATHEMATICS, 2013,
[8]   Numerical solution of the nonlinear Klein-Gordon equation using radial basis functions [J].
Dehghan, Mehdi ;
Shokri, Ali .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 230 (02) :400-410
[9]  
Dodd R.K., 1982, Singapore, DOI DOI 10.1142/7960.8
[10]   Numerical study of the generalised Klein-Gordon equations [J].
Dutykh, Denys ;
Chhay, Marx ;
Clamond, Didier .
PHYSICA D-NONLINEAR PHENOMENA, 2015, 304 :23-33