Sparse-Group Non-convex Penalized Multi-Attribute Graphical Model Selection

被引:3
作者
Tugnait, Jitendra K. [1 ]
机构
[1] Auburn Univ, Dept Elect & Comp Engn, Auburn, AL 36849 USA
来源
29TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2021) | 2021年
关键词
Multi-attribute graph learning; inverse covariance estimation; undirected graph; SCAD penalty; INVERSE COVARIANCE ESTIMATION; VARIABLE SELECTION; LIKELIHOOD;
D O I
10.23919/EUSIPCO54536.2021.9616255
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
We consider the problem of inferring the conditional independence graph (CIG) of high-dimensional Gaussian vectors from multi-attribute data. Most existing methods for graph estimation are based on single-attribute models where one associates a scalar random variable with each node. In multi-attribute graphical models, each node represents a random vector. In this paper we consider a sparse-group smoothly clipped absolute deviation (SG-SCAD) penalty instead of sparse-group lasso (SGL) penalty to regularize the problem. We analyze an SG-SCAD-penalized log-likelihood based objective function to establish consistency of a local estimator of inverse covariance. A numerical example is presented to illustrate the advantage of SG-SCAD-penalty over the usual SGL-penalty.
引用
收藏
页码:1850 / 1854
页数:5
相关论文
共 21 条
[1]  
Banerjee O, 2008, J MACH LEARN RES, V9, P485
[2]   Distributed optimization and statistical learning via the alternating direction method of multipliers [J].
Boyd S. ;
Parikh N. ;
Chu E. ;
Peleato B. ;
Eckstein J. .
Foundations and Trends in Machine Learning, 2010, 3 (01) :1-122
[3]   Group descent algorithms for nonconvex penalized linear and logistic regression models with grouped predictors [J].
Breheny, Patrick ;
Huang, Jian .
STATISTICS AND COMPUTING, 2015, 25 (02) :173-187
[4]  
Chiquet J, 2019, METHODS MOL BIOL, V1883, P143, DOI 10.1007/978-1-4939-8882-2_6
[5]   The joint graphical lasso for inverse covariance estimation across multiple classes [J].
Danaher, Patrick ;
Wang, Pei ;
Witten, Daniela M. .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2014, 76 (02) :373-397
[6]   Variable selection via nonconcave penalized likelihood and its oracle properties [J].
Fan, JQ ;
Li, RZ .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2001, 96 (456) :1348-1360
[7]   Sparse inverse covariance estimation with the graphical lasso [J].
Friedman, Jerome ;
Hastie, Trevor ;
Tibshirani, Robert .
BIOSTATISTICS, 2008, 9 (03) :432-441
[8]  
Kolar M., 2013, P 30 INT C MACH LEAR
[9]  
Kolar M, 2014, J MACH LEARN RES, V15, P1713
[10]   SPARSISTENCY AND RATES OF CONVERGENCE IN LARGE COVARIANCE MATRIX ESTIMATION [J].
Lam, Clifford ;
Fan, Jianqing .
ANNALS OF STATISTICS, 2009, 37 (6B) :4254-4278