Inhomogeneous diophantine approximation of some Hurwitzian numbers

被引:0
作者
Bumby, Richard T. [1 ]
Flahive, Mary E. [2 ]
机构
[1] Rutgers State Univ, Dept Math, Hill Ctr, Busch Campus,110 Frelinghuysen Rd, Piscataway, NJ 08854 USA
[2] Oregon State Univ, Dept Math Oregon, Corvallis, OR 97331 USA
来源
DIOPHANTINE ANALYSIS AND RELATED FIELDS - DARF 2007/2008 | 2008年 / 976卷
关键词
inhomogeneous diophantine approximation; continued fractions; Hurwitzian numbers;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We continue the work of Takao Komatsu, and consider the inhomogeneous approximation constant L(theta,phi) for Hurwitzian theta and phi is an element of Q(theta) + Q. The current work uses a compactness theorem to relate such inhomogeneous constants to the homogeneous approximation constants. Among the new results are: a characterization of such pairs theta,phi for which L(theta,phi) = 0, consideration of small values of n(2) L(e(2/s),phi) for phi = (r theta + m)/n, and the proof of a conjecture of Komatsu.
引用
收藏
页码:31 / +
页数:2
相关论文
共 21 条
[1]  
[Anonymous], 1995, INTRO DIOPHANTINE AP
[2]   A FORMAL ACCOUNT OF SOME ELEMENTARY CONTINUED-FRACTION ALGORITHMS [J].
BEYNON, WM .
JOURNAL OF ALGORITHMS, 1983, 4 (03) :221-240
[3]   A short proof of the simple continued fraction expansion of e [J].
Cohn, H .
AMERICAN MATHEMATICAL MONTHLY, 2006, 113 (01) :57-62
[4]  
Cusick T. W., 1989, The Markoff and Lagrange spectra, V30
[5]  
CUSICK TW, 1993, LECT NOTES PURE APPL, V147, P95
[6]   Hall's ray in inhomogeneous diophantine approximation [J].
Cusick, TW ;
Moran, W ;
Pollington, AD .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1996, 60 :42-50
[7]   ON INHOMOGENEOUS DIOPHANTINE APPROXIMATION [J].
CUSICK, TW ;
ROCKETT, AM ;
SZUSZ, P .
JOURNAL OF NUMBER THEORY, 1994, 48 (03) :259-283
[8]  
ELSNER C, 1999, C MATH, V79, P133
[9]  
Grace JH, 1918, P LOND MATH SOC, V17, P316
[10]  
KOKSMA JF, 1936, DIOPHANTISCHE APPROX