Stability and bifurcations of even periodic orbits in the Sitnikov problem

被引:3
作者
Galan-Vioque, Jorge [1 ]
Nunez, Daniel [2 ]
Rivera, Andres [2 ]
Riccio, Camila [2 ]
机构
[1] Univ Seville, Escuela Tecn Super Ingn, Appl Math, Seville, Spain
[2] Pontificia Univ Javeriana Cali, Cali, Colombia
关键词
Periodic orbits; Sitnikov problem; Numerical continuation; CONTINUATION; FAMILIES; MOTIONS;
D O I
10.1007/s10569-018-9875-z
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We study different families of even periodic solutions in the classical Sitnikov problem that emanate from the circular case as the eccentricity is increased. The families can be classified by the number N of full revolutions of the primaries and labelled by the number of zeroes p of the vertical coordinate of the massless body in half a period. We give a linear stability criterion of these branches depending on even N, based on the sign for the initial slope of the discriminant function for the associated Hill's equation, in a computable interval of eccentricities. All families for N=2 are linearly stable for small and computable e. The results show a fundamental symmetry-driven difference between the even and odd N cases.
引用
收藏
页数:20
相关论文
共 29 条
[1]   ON THE FAMILIES OF PERIODIC-ORBITS WHICH BIFURCATE FROM THE CIRCULAR SITNIKOV MOTIONS [J].
BELBRUNO, E ;
LLIBRE, J ;
OLLE, M .
CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 1994, 60 (01) :99-129
[2]   Periodic orbits of the Sitnikov problem via a Poincare map [J].
Corbera, M ;
Llibre, J .
CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2000, 77 (04) :273-303
[3]  
Corbera M., 2002, CONT MATH, V292, P91
[4]  
Doedel E. J., 1997, AUTO97
[5]  
Dormand J., 1980, J. Comput. Appl. Math., V6, P19, DOI 10.1016/0771-050X(80)90013-3
[6]   NUMERICAL RESULTS TO THE SITNIKOV-PROBLEM [J].
Dvorak, R. .
CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 1993, 56 (1-2) :71-80
[7]   Quantitative Stability of Certain Families of Periodic Solutions in the Sitnikov Problem [J].
Galan, Jorge ;
Nunez, Daniel ;
Rivera, Andres .
SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2018, 17 (01) :52-77
[8]   Continuation of periodic orbits in symmetric Hamiltonian and conservative systems [J].
Galan-Vioque, J. ;
Almaraz, F. J. M. ;
Macias, E. F. .
EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2014, 223 (13) :2705-2722
[9]   Continuation of normal doubly symmetric orbits in conservative reversible systems [J].
Javier Munoz-Almaraz, Francisco ;
Freire, Emilio ;
Galan-Vioque, Jorge ;
Vanderbauwhede, Andre .
CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2007, 97 (01) :17-47
[10]   Symmetries and bifurcations in the Sitnikov problem [J].
Jiménez-Lara, L ;
Escalona-Buendía, A .
CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2001, 79 (02) :97-117