Dense point spectrum for the one-dimensional Dirac operator with an electrostatic potential

被引:8
作者
Schmidt, KM
机构
[1] Mathematisches Institut der Universität, D-80333 München
关键词
D O I
10.1017/S0308210500023271
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For the one-dimensional Dirac operator, examples of electrostatic potentials with decay behaviour arbitrarily close to Coulomb decay are constructed for which the operator has a prescribed set of eigenvalues dense in the whole or part of its essential spectrum. A simple proof that the essential spectrum of one-dimensional Dirac operators with electrostatic potentials is never empty is given in the appendix.
引用
收藏
页码:1087 / 1096
页数:10
相关论文
共 12 条
[1]  
[Anonymous], 1987, ANALYSIS-UK
[2]   EXISTENCE OF EIGENVALUES EMBEDDED IN CONTINUOUS SPECTRUM OF ORDINARY DIFFERENTIAL OPERATORS [J].
EASTHAM, MSP ;
MCLEOD, JB .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1977, 79 :25-34
[3]   NOTE ON A PAPER BY TITCHMARSH [J].
ERDELYI, A .
QUARTERLY JOURNAL OF MATHEMATICS, 1963, 14 (54) :147-&
[4]  
EVANS WD, 1981, P ROY SOC EDINB A, V88, P1
[5]   ABSOLUTELY CONTINUOUS SPECTRA OF DIRAC SYSTEMS WITH LONG-RANGE, SHORT-RANGE AND OSCILLATING-POTENTIALS [J].
HINTON, DB ;
SHAW, JK .
QUARTERLY JOURNAL OF MATHEMATICS, 1985, 36 (142) :183-213
[6]   DIRAC SYSTEMS WITH DISCRETE SPECTRA [J].
HINTON, DB ;
SHAW, JK .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1987, 39 (01) :100-122
[8]   DENSE POINT SPECTRA OF SCHRODINGER AND DIRAC OPERATORS [J].
NABOKO, SN .
THEORETICAL AND MATHEMATICAL PHYSICS, 1986, 68 (01) :646-653
[9]  
ROOS BW, 1961, P AM MATH SOC, V12, P468
[10]   ON NATURE OF SPECTRUM IN PROBLEMS OF RELATIVISTIC QUANTUM MECHANICS [J].
TITCHMARSH, E .
QUARTERLY JOURNAL OF MATHEMATICS, 1961, 12 (47) :227-&