Investigation of approaches for the fabrication of protein patterns by scanning probe lithography

被引:87
作者
Kenseth, JR
Harnisch, JA
Jones, VW
Porter, MD [1 ]
机构
[1] Iowa State Univ Sci & Technol, Ames Lab, Microanalyt Instrumentat Ctr, USDOE, Ames, IA 50011 USA
[2] Iowa State Univ Sci & Technol, Dept Chem, Ames, IA 50011 USA
关键词
D O I
10.1021/la0100744
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This paper investigates three different approaches to patterning proteins within ultrathin resist layers formed from self-assembled monolayers using scanning probe lithography (SPL) at the submicrometer length scale. The first approach uses a "nanografting" method to pattern a reactive carboxylic acid terminated thiol into a resist composed of a methyl-terminated monolayer. Rabbit IgG antigen is bound to the patterned region, and an immunoassay utilizing direct readout of the topographic change resulting from specific binding of anti-rabbit IgG antibody is performed using scanning force microscopy. To address issues related to nonspecific protein adsorption, the other two approaches investigated the patterned removal of glycol-terminated monolayers by mechanically "scraping" patterns at high tip-sample forces by SPL. Protein attachment to the scraped regions was achieved either through the chemisorption of a disulfide coupling agent or by the direct adsorption of Fab'-SH antibody fragments. Results obtained from all approaches are presented and compared, and the strengths and weaknesses of each toward fabricating high-density, multiple protein arrays are discussed.
引用
收藏
页码:4105 / 4112
页数:8
相关论文
共 55 条
[1]   Printing patterns of proteins [J].
Bernard, A ;
Delamarche, E ;
Schmid, H ;
Michel, B ;
Bosshard, HR ;
Biebuyck, H .
LANGMUIR, 1998, 14 (09) :2225-2229
[2]   Protein patterning [J].
Blawas, AS ;
Reichert, WM .
BIOMATERIALS, 1998, 19 (7-9) :595-609
[3]  
BOLAND T, 1998, SCANNING PROBE MICRO, P342
[4]   A multistep chemical modification procedure to create DNA arrays on gold surfaces for the study of protein-DNA interactions with surface plasmon resonance imaging [J].
Brockman, JM ;
Frutos, AG ;
Corn, RM .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1999, 121 (35) :8044-8051
[5]   Segregation of micrometer-dimension biosensor elements on a variety of substrate surfaces [J].
Brooks, SA ;
Dontha, N ;
Davis, CB ;
Stuart, JK ;
O'Neill, G ;
Kuhr, WG .
ANALYTICAL CHEMISTRY, 2000, 72 (14) :3253-3259
[6]   Patterned deposition of cells and proteins onto surfaces by using three-dimensional microfluidic systems [J].
Chiu, DT ;
Jeon, NL ;
Huang, S ;
Kane, RS ;
Wargo, CJ ;
Choi, IS ;
Ingber, DE ;
Whitesides, GM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (06) :2408-2413
[7]   Microfluidic networks for chemical patterning of substrate: Design and application to bioassays [J].
Delamarche, E ;
Bernard, A ;
Schmid, H ;
Bietsch, A ;
Michel, B ;
Biebuyck, H .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1998, 120 (03) :500-508
[8]   Patterned delivery of immunoglobulins to surfaces using microfluidic networks [J].
Delamarche, E ;
Bernard, A ;
Schmid, H ;
Michel, B ;
Biebuyck, H .
SCIENCE, 1997, 276 (5313) :779-781
[9]   Heterogeneous immunosensing using antigen and antibody monolayers on gold surfaces with electrochemical and scanning probe detection [J].
Dong, YZ ;
Shannon, C .
ANALYTICAL CHEMISTRY, 2000, 72 (11) :2371-2376
[10]   Covalent immobilization of immunoglobulins G and Fab' fragments on gold substrates for scanning force microscopy imaging in liquids [J].
Droz, E ;
Taborelli, M ;
Descouts, P ;
Wells, TNC ;
Werlen, RC .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1996, 14 (02) :1422-1426