Exploring Deep Learning-based Branch Prediction for Computer Devices

被引:0
|
作者
Seo, Yeongeun [1 ,2 ]
Park, Jaehyun [3 ]
Ahn, Jung Ho [3 ]
Moon, Taesup [1 ]
机构
[1] Sungkyunkwan Univ, Dept Semicond & Display Engn, Suwon, South Korea
[2] Samsung Elect, Semicond R&D Ctr, Hwasung, South Korea
[3] Seoul Natl Univ, Dept Transdisciplinary Studies, Seoul, South Korea
来源
2019 4TH IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS - ASIA (IEEE ICCE-ASIA 2019) | 2019年
关键词
branch prediction; deep learning; CNN;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Branch predictor is a critical component in CPUs because its prediction accuracy highly influences the performance of computer devices. This technology attempts to predict whether a branch instruction is 'taken' or 'not taken' and executes the following instructions in an execution order based on the prediction result. If the prediction is incorrect, those speculatively executed instructions must be rolled back, causing overheads on both performance and energy efficiency. Conventional branch predictors typically adopt rule-based methods exploiting branch history (i.e., whether recently encountered branches in the course of execution or on the same address of the current instruction were taken or not), whereas deep learning-based prediction methods have been recently proposed. In this paper, we show the neural network model learned with less dataset generalizes well for all applications, not just for specific applications in the training set. Also, unlike the previous deep learning-based branch prediction studies, which were difficult to reproduce, this paper includes clear experiment contents.
引用
收藏
页码:85 / 87
页数:3
相关论文
共 50 条
  • [1] Exploring Edge Machine Learning-based Stress Prediction using Wearable Devices
    Sim, Sang-Hun
    Paranjpe, Tara
    Roberts, Nicole
    Zhao, Ming
    2022 21ST IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS, ICMLA, 2022, : 1266 - 1273
  • [2] Deep Learning-Based Conformal Prediction of Toxicity
    Zhang, Jin
    Norinder, Ulf
    Svensson, Fredrik
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2021, 61 (06) : 2648 - 2657
  • [3] Deep learning-based dose prediction for INTRABEAM
    Abushawish, Mojahed
    Galapon, Arthur V.
    Herraiz, Joaquin L.
    Udias, Jose M.
    Ibanez, Paula
    RADIOTHERAPY AND ONCOLOGY, 2024, 194 : S4472 - S4474
  • [4] Deep learning-based prediction of TFBSs in plants
    Shen, Wei
    Pan, Jian
    Wang, Guanjie
    Li, Xiaozheng
    TRENDS IN PLANT SCIENCE, 2021, 26 (12) : 1301 - 1302
  • [5] Deep learning-based prediction of proteincarbohydrate interfaces
    Gheeraert, A.
    Lin, R. Leon Foun
    Bailly, T.
    Ren, Y.
    Vander Meersche, Y.
    Cretin, G.
    Gelly, J.
    Galochkina, T.
    FEBS OPEN BIO, 2024, 14 : 94 - 94
  • [6] Deep learning-based location prediction in VANET
    Rezazadeh, Nafiseh
    Amirabadi, Mohammad Ali
    Kahaei, Mohammad Hossein
    IET INTELLIGENT TRANSPORT SYSTEMS, 2024, 18 (09) : 1574 - 1587
  • [7] Deep Learning-Based Wave Overtopping Prediction
    Alvarellos, Alberto
    Figuero, Andres
    Rodriguez-Yanez, Santiago
    Sande, Jose
    Pena, Enrique
    Rosa-Santos, Paulo
    Rabunal, Juan
    APPLIED SCIENCES-BASEL, 2024, 14 (06):
  • [8] A Survey of Deep Learning-Based Lightning Prediction
    Wang, Xupeng
    Hu, Keyong
    Wu, Yongling
    Zhou, Wei
    ATMOSPHERE, 2023, 14 (11)
  • [9] Deep learning-based prediction of autoimmune diseases
    Yang, Donghong
    Peng, Xin
    Zheng, Senlin
    Peng, Shenglan
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [10] Deep Learning-Based Weather Prediction: A Survey
    Ren, Xiaoli
    Li, Xiaoyong
    Ren, Kaijun
    Song, Junqiang
    Xu, Zichen
    Deng, Kefeng
    Wang, Xiang
    BIG DATA RESEARCH, 2021, 23