Stability of the Fulde-Ferrell-Larkin-Ovchinnikov states in anisotropic systems and critical behavior at thermal m-axial Lifshitz points

被引:6
作者
Zdybel, Piotr [1 ]
Homenda, Mateusz [1 ]
Chlebicki, Andrzej [1 ]
Jakubczyk, Pawel [1 ]
机构
[1] Univ Warsaw, Fac Phys, Inst Theoret Phys, Pasteura 5, PL-02093 Warsaw, Poland
关键词
RENORMALIZATION-GROUP APPROACH; PHASE; TRANSITION; EXPONENTS;
D O I
10.1103/PhysRevA.104.063317
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We revisit the question concerning the stability of nonuniform superfluid states of the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) type to thermal and quantum fluctuations. On general grounds, we argue that the mean-field phase diagram hosting a Lifshitz point cannot be stable to fluctuations for isotropic, continuum systems, at any temperature T > 0 in any dimensionality d < 4. In contrast, in layered unidirectional systems, the lower critical dimension for the onset of FFLO-type long-range order accompanied by a Lifshitz point at T > 0 is d = 5/2. In consequence, its occurrence is excluded in d = 2, but not in d = 3. We propose a relatively simple method, based on nonperturbative renormalization group, to compute the critical exponents of the thermal m-axial Lifshitz point continuously varying m, spatial dimensionality d, and the number of order parameter components, N. We point out the possibility of a robust, fine-tuning free occurrence of a quantum Lifshitz point in the phase diagram of imbalanced Fermi mixtures.
引用
收藏
页数:12
相关论文
共 82 条
[1]   The Physics of Pair-Density Waves: Cuprate Superconductors and Beyond [J].
Agterberg, Daniel F. ;
Davis, J. C. Seamus ;
Edkins, Stephen D. ;
Fradkin, Eduardo ;
Van Harlingen, Dale J. ;
Kivelson, Steven A. ;
Lee, Patrick A. ;
Radzihovsky, Leo ;
Tranquada, John M. ;
Wang, Yuxuan .
ANNUAL REVIEW OF CONDENSED MATTER PHYSICS, VOL 11, 2020, 2020, 11 :231-270
[2]  
[Anonymous], 1995, Principles of Condensed Matter Physics
[3]   Inhomogeneous superfluid phases in 6Li-40K mixtures at unitarity [J].
Baarsma, J. E. ;
Stoof, H. T. C. .
PHYSICAL REVIEW A, 2013, 87 (06)
[4]   Population and mass imbalance in atomic Fermi gases [J].
Baarsma, J. E. ;
Gubbels, K. B. ;
Stoof, H. T. C. .
PHYSICAL REVIEW A, 2010, 82 (01)
[5]   Conformal invariance in the nonperturbative renormalization group: A rationale for choosing the regulator [J].
Balog, Ivan ;
De Polsi, Gonzalo ;
Tissier, Matthieu ;
Wschebor, Nicolas .
PHYSICAL REVIEW E, 2020, 101 (06)
[6]   Convergence of Nonperturbative Approximations to the Renormalization Group [J].
Balog, Ivan ;
Chate, Hugues ;
Delamotte, Bertrand ;
Marohnic, Maroje ;
Wschebor, Nicolas .
PHYSICAL REVIEW LETTERS, 2019, 123 (24)
[7]   Non-perturbative renormalization flow in quantum field theory and statistical physics [J].
Berges, J ;
Tetradis, N ;
Wetterich, C .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 363 (4-6) :223-386
[8]   Ultracold quantum gases in optical lattices [J].
Bloch, I .
NATURE PHYSICS, 2005, 1 (01) :23-30
[9]   Sarma phase in relativistic and non- relativistic systems [J].
Boettcher, I. ;
Herbst, T. K. ;
Pawlowski, J. M. ;
Strodthoff, N. ;
von Smekal, L. ;
Wetterich, C. .
PHYSICS LETTERS B, 2015, 742 :86-93
[10]   Phase structure of spin-imbalanced unitary Fermi gases [J].
Boettcher, I. ;
Braun, J. ;
Herbst, T. K. ;
Pawlowski, J. M. ;
Roscher, D. ;
Wetterich, C. .
PHYSICAL REVIEW A, 2015, 91 (01)