Some Inequalities on Finsler Manifolds with Weighted Ricci Curvature Bounded Below

被引:11
作者
Cheng, Xinyue [1 ]
Shen, Zhongmin [2 ]
机构
[1] Chongqing Normal Univ, Sch Math Sci, Chongqing 401331, Peoples R China
[2] Indiana Univ Purdue Univ, Dept Math Sci, Indianapolis, IN 46202 USA
基金
中国国家自然科学基金;
关键词
Finsler metric; Ricci curvature; weighted Ricci curvature; geodesic ball; volume comparison; Poincare-Lichnerowicz inequality; FUNCTIONAL INEQUALITIES; COMPARISON-THEOREMS; GEOMETRY;
D O I
10.1007/s00025-022-01605-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish some important inequalities under a lower weighted Ricci curvature bound on Finsler manifolds. Firstly, we establish a relative volume comparison of Bishop-Gromov type. As one of the applications, we obtain an upper bound for volumes of the Finsler manifolds. Further, when the S-curvature is bounded on the whole manifold, we obtain a theorem of Bonnet-Myers type on Finsler manifolds. Finally, we obtain a sharp Poincare-Lichnerowicz inequality by using integrated Bochner inequality, from which we obtain a better lower bound for the first eigenvalue on the Finsler manifolds.
引用
收藏
页数:23
相关论文
共 17 条
[1]  
Bao D., 2000, INTRO RIEMANN FINSLE, V200
[2]  
Cheng X, ARXIV191008267V1MATH
[3]  
Chern S.-S., 2005, Riemann-Finsler Geometry, V6
[4]  
Chern SS., 1996, Notices of the American Mathematical Society, V43, P959
[5]  
Ohta S., COMMUN ANAL GEOM
[6]   Some functional inequalities on non-reversible Finsler manifolds [J].
Ohta, Shin-Ichi .
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2017, 127 (05) :833-855
[7]   Bochner-Weitzenbock formula and Li-Yau estimates on Finsler manifolds [J].
Ohta, Shin-ichi ;
Sturm, Karl-Theodor .
ADVANCES IN MATHEMATICS, 2014, 252 :429-448
[8]   Finsler interpolation inequalities [J].
Ohta, Shin-ichi .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2009, 36 (02) :211-249
[9]   Heat Flow on Finsler Manifolds [J].
Ohta, Shin-Ichi ;
Sturm, Karl-Theodor .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2009, 62 (10) :1386-1433
[10]  
Shen Z., 2001, Differential Geometry of Spray and Finsler Spaces, DOI DOI 10.1007/978-94-015-9727-2