LP moduli of continuity of Gaussian processes and local times of symmetric Levy processes

被引:10
作者
Marcus, Michael B. [1 ]
Rosen, Jay [2 ]
机构
[1] CUNY City Coll, Dept Math, New York, NY 10031 USA
[2] CUNY Coll Staten Isl, Dept Math, Staten Isl, NY 10314 USA
关键词
Gaussian processes; local times; Levy processes;
D O I
10.1214/009117907000000277
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let X = {X(t), t epsilon R+} be a real-valued symmetric Levy process with local times {L-t(x), (t, X) epsilon R+ x R} and characteristic function e(i lambda X(t)) = et(-t psi(lambda)). Let sigma(2)(0)(x-y) = 4/pi integral(infinity)(0) sin(2)(lambda(x-y)/2)/psi(lambda) d lambda. If sigma(2)(0)(h) is concave, and satisfies some additional very weak regularity conditions, then for any p >= t and all t epsilon R+, lim(h down arrow 0)integral(b)(a)vertical bar L-t(x+h) - L-t(x)/sigma(0)(h)vertical bar(p) dx = 2(p/2) E vertical bar eta vertical bar(p) integral(b)(a) vertical bar L-t(x)vertical bar(p/2) dx for all a, b in the extended real line almost surely, and also in L-m, m >= 1. (Here eta is a normal random variable with mean zero and variance one.) This result is obtained via the Eisenbaum Isomorphism Theorem and depends on the related result for Gaussian processes with stationary increments, {G(x), x epsilon R-1}, for which E(G(x) - G(Y))(2) = sigma(2)(0)(x-y); lim(h down arrow 0)integral(b)(a)vertical bar G(x+h) - G(x)/sigma(0)(h)vertical bar(p) dx = E vertical bar eta vertical bar(p) (b-a) for all a,b epsilon R-1, almost surely.
引用
收藏
页码:594 / 622
页数:29
相关论文
共 4 条
[1]  
Kahane J.-P., 1985, Cambridge Studies in Advanced Mathematics, VSecond
[2]  
Marcus M. B., 2006, CAMBRIDGE STUD ADV M, V100
[3]  
WSCHEBOR M, 1992, CR ACAD SCI I-MATH, V315, P1293
[4]  
YOR M, 1983, LECT NOTES MATH, V986, P89