LOGARITHMICALLY IMPROVED REGULARITY CRITERIA FOR THE NAVIER-STOKES EQUATIONS IN HOMOGENEOUS BESOV SPACES

被引:0
|
作者
Nguyen Anh Dao [1 ]
Ildefonso Diaz, Jesus [2 ]
机构
[1] Univ Econ Ho Chi Minh City, Inst Appl Math, Ho Chi Minh City, Vietnam
[2] Univ Complutense Madrid, Inst Matemat Interdisciplinar, Madrid 28040, Spain
关键词
Besov space; Navier-Stokes equations; regularity criteria; SMOOTH SOLUTIONS; WEAK SOLUTIONS; EULER; BMO; INEQUALITIES; LP;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate a logarithmically improved regularity criteria in terms of the velocity, or the vorticity, for the Navier-Stokes equations in homogeneous Besov spaces. More precisely, we prove that if the weak solution u satisfies either integral(T)(0) parallel to u(t)parallel to(2/1-alpha)((B)over dot infinity,infinity-alpha)/1 + log(+) parallel to u(t)parallel to((H)over dots0) dt < infinity, or integral(T)(0) parallel to w(t)parallel to(2/2-alpha)((B)over dot infinity,infinity-alpha)/1 + log(+) parallel to w(t)parallel to((H)over dots0) dt < infinity, where w = rot u, then u is regular on (0, T]. Our conclusions improve some results by Fan et al. [5].
引用
收藏
页数:9
相关论文
共 50 条