A Stretchable and Transparent Nanocomposite Nanogenerator for Self-Powered Physiological Monitoring

被引:136
|
作者
Chen, Xiaoliang [1 ,2 ]
Parida, Kaushik [1 ]
Wang, Jiangxin [1 ]
Xiong, Jiaqing [1 ]
Lin, Meng-Fang [1 ]
Shao, Jinyou [2 ]
Lee, Pooi See [1 ]
机构
[1] Nanyang Technol Univ, Sch Mat Sci & Engn, 50 Nanyang Ave, Singapore 639798, Singapore
[2] Xi An Jiao Tong Univ, State Key Lab Mfg Syst Engn, Xian 710049, Shaanxi, Peoples R China
基金
新加坡国家研究基金会;
关键词
stretchable; transparent; piezoelectric nanocomposite; triboelectric; strain sensor; self-powered; physiological monitoring; PIEZOELECTRIC NANOGENERATOR; HYBRID NANOGENERATOR; PRESSURE SENSORS; ELECTRONIC SKIN; STRAIN SENSORS; ENERGY; PERFORMANCE; FIBER; FABRICATION; COMPOSITE;
D O I
10.1021/acsami.7b13767
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Smart sensing electronic devices with good transparency, high stretchability, and self-powered sensing characteristics are essential in wearable health monitoring systems. This paper innovatively proposes a stretchable nanocomposite nanogenerator with good transparency that can be conformally attached to the human body to harvest biomechanical energy and monitor physiological signals. The work reports an innovative device that uses sprayed silver nanowires as transparent electrodes and sandwiches a nanocomposite of piezoelectric BaTiO3 and polydimethylsiloxane as the sensing layer, which exhibits good transparency and mechanical transformability with stretchable, foldable, and twistable properties. The highly flexible nanogenerator affords a good input output linearity under the vertical force and the sensing ability to detect lateral stretching deformation up to 60% strain under piezoelectric mechanisms. Furthermore, the proposed device can effectively harvest touch energies from the human body as a single-electrode triboelectric nanogenerator. Under periodic contact and separation, a maximum output voltage of 105 V, a current density of 6.5 mu A/cm(2), and a power density of 102 mu W/cm(2) can be achieved, exhibiting a good power generation performance. Owing to the high conformability and excellent sensitivity of the nanogenerator, it can also act as a self-powered wearable sensor attached to different parts of the human body for real-time monitoring of the human physiological signals such as eye blinking, pronunciation, arm movement, and radial artery pulse. The designed nanocomposite nanogenerator shows great potential for use in self-powered e-skins and healthcare monitoring systems.
引用
收藏
页码:42200 / 42209
页数:10
相关论文
共 50 条
  • [1] Transparent and stretchable triboelectric nanogenerator for self-powered tactile sensing
    Zhao, Gengrui
    Zhang, Yawen
    Shi, Nan
    Liu, Zhirong
    Zhang, Xiaodi
    Wu, Mengqi
    Pan, Caofeng
    Liu, Hongliang
    Li, Linlin
    Wang, Zhong Lin
    NANO ENERGY, 2019, 59 : 302 - 310
  • [2] Stretchable, transparent triboelectric nanogenerator as a highly sensitive self-powered sensor for driver fatigue and distraction monitoring
    Lu, Xiao
    Zheng, Li
    Zhang, Haodong
    Wang, Wuhong
    Wang, Zhong Lin
    Sun, Chunwen
    NANO ENERGY, 2020, 78 (78)
  • [3] Transparent flexible nanogenerator as self-powered sensor for transportation monitoring
    Lin, Long
    Hu, Youfan
    Xu, Chen
    Zhang, Yan
    Zhang, Rui
    Wen, Xiaonan
    Wang, Zhong Lin
    NANO ENERGY, 2013, 2 (01) : 75 - 81
  • [4] A Flexible and Stretchable Self-Powered Nanogenerator in Basketball Passing Technology Monitoring
    Jia, Changjun
    Zhu, Yongsheng
    Sun, Fengxin
    Zhao, Tianming
    Xing, Rongda
    Mao, Yupeng
    Zhao, Chongle
    ELECTRONICS, 2021, 10 (21)
  • [5] A Stretchable, Flexible Triboelectric Nanogenerator for Self-Powered Real-Time Motion Monitoring
    Lu, Cunxin
    Chen, Jian
    Jiang, Tao
    Gu, Guangqin
    Tang, Wei
    Wang, Zhong Lin
    ADVANCED MATERIALS TECHNOLOGIES, 2018, 3 (06):
  • [6] Self-Powered Biosensors for Monitoring Human Physiological Changes
    Xue, Ziao
    Wu, Li
    Yuan, Junlin
    Xu, Guodong
    Wu, Yuxiang
    BIOSENSORS-BASEL, 2023, 13 (02):
  • [7] SELF-POWERED TRANSPARENT STRETCHABLE 3D MOTION SENSOR
    Guo, Hang
    Chen, Xuexian
    Miao, Liming
    Wang, Haobin
    Wan, Ji
    Zhang, Haixia
    2019 20TH INTERNATIONAL CONFERENCE ON SOLID-STATE SENSORS, ACTUATORS AND MICROSYSTEMS & EUROSENSORS XXXIII (TRANSDUCERS & EUROSENSORS XXXIII), 2019, : 554 - 557
  • [8] A stretchable fiber nanogenerator for versatile mechanical energy harvesting and self-powered full-range personal healthcare monitoring
    Cheng, Yin
    Lu, Xin
    Chan, Kwok Hoe
    Wang, Ranran
    Cao, Zherui
    Sun, Jing
    Ho, Ghim Wei
    NANO ENERGY, 2017, 41 : 511 - 518
  • [9] A Highly Stretchable Transparent Self-Powered Triboelectric Tactile Sensor with Metallized Nanofibers for Wearable Electronics
    Wang, Xiandi
    Zhang, Yufei
    Zhang, Xiaojia
    Huo, Zhihao
    Li, Xiaoyi
    Que, Miaoling
    Peng, Zhengchun
    Wang, Hui
    Pan, Caofeng
    ADVANCED MATERIALS, 2018, 30 (12)
  • [10] A self-powered stretchable sensor fabricated by serpentine PVDF film for multiple dynamic monitoring
    Guo, Rui
    Zhang, Hulin
    Cao, Shengli
    Cui, Xiaojing
    Yan, Zhuocheng
    Sang, Shengbo
    MATERIALS & DESIGN, 2019, 182