Application of empirical mode decomposition for analysis of normal and diabetic RR-interval signals

被引:70
|
作者
Pachori, Ram Bilas [1 ]
Avinash, Pakala [1 ]
Shashank, Kora [1 ]
Sharma, Rajeev [1 ]
Acharya, U. Rajendra [2 ]
机构
[1] Indian Inst Technol lndore, Discipline Elect Engn, Indore 452017, Madhya Pradesh, India
[2] Ngee Ann Polytech, Dept Elect & Commun Engn, Singapore 599489, Singapore
关键词
RR signal; Diabetes; EMD; IMF; Nonlinear; HEART-RATE-VARIABILITY; AUTOMATED DETECTION; TIME; CLASSIFICATION; SEIZURE; STABILITY; FEATURES; REPRESENTATION; PREVALENCE; TRANSFORM;
D O I
10.1016/j.eswa.2015.01.051
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Large number of people are affected by Diabetes Mellitus (DM) which is difficult to cure due to its chronic nature and genetic link. The uncontrolled diabetes may lead to heart related problems. Therefore, the diagnosis and monitoring of diabetes is of great importance. The automatic detection of diabetes can be performed using RR-interval signals. The RR-interval signals are nonlinear and non-stationary in nature. Hence linear methods may not be able to capture the hidden information present in the signal. In this paper, a new nonlinear method based on empirical mode decomposition (EMD) is proposed to discriminate between diabetic and normal RR-interval signals. The mean frequency parameter using Fourier Bessel series expansion (MFFB) and the two bandwidth parameters namely, amplitude modulation bandwidth (B-AM) and frequency modulation bandwidth (B-FM) extracted from the intrinsic mode functions (IMFs) obtained from the EMD of RR-interval signals are used to discriminate the two groups. Unique representations such as analytic signal representation (ASR) and second order difference plot (SODP) for IMFs of RR-interval signals are also proposed to differentiate the two groups. The area parameters are computed from ASR and SODP of IMEs of RR-interval signals. Area computed from these representation as area corresponding to the 95% central tendency measure (CTM) of ASR of IMFs (A(ASR)) and 95% confidence ellipse area of SODP of IMF (A(SODP)) are also proposed to discriminate diabetic and normal RR-interval signals. Overall, five features are extracted from IMFs of RR-interval signals namely MFFB, B-AM, B-FM, A(ASR) and A(SODP). Kruskal Wallis statistical test is used to measure the discrimination ability of the proposed features for detection of diabetic RR-interval signals. Results obtained from proposed methodology indicate that these features provide the statistically significant difference between diabetic and normal classes. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:4567 / 4581
页数:15
相关论文
共 50 条
  • [31] APPLICATION OF EMPIRICAL MODE DECOMPOSITION (EMD) FOR AUTOMATED DETECTION OF EPILEPSY USING EEG SIGNALS
    Martis, Roshan Joy
    Acharya, U. Rajendra
    Tan, Jen Hong
    Petznick, Andrea
    Yanti, Ratna
    Chua, Chua Kuang
    Ng, E. Y. K.
    Tong, Louis
    INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2012, 22 (06)
  • [32] Improved bi-dimensional empirical mode decomposition based on 2D-assisted signals: analysis and application
    Xu, G. L.
    Wang, X. T.
    Xu, X. G.
    IET IMAGE PROCESSING, 2011, 5 (03) : 205 - 221
  • [33] Emotion recognition from EEG signals by using multivariate empirical mode decomposition
    Mert, Ahmet
    Akan, Aydin
    PATTERN ANALYSIS AND APPLICATIONS, 2018, 21 (01) : 81 - 89
  • [34] Detection of Ventricular Fibrillation Using Ensemble Empirical Mode Decomposition of ECG Signals
    Oh, Seungrok
    Choi, Young-Seok
    ELECTRONICS, 2024, 13 (04)
  • [35] Can empirical mode decomposition improve heartbeat detection in fetal phonocardiography signals?
    Vican, Ivan
    Krekovic, Gordan
    Jambrosic, Kristian
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2021, 203
  • [36] A new approach of denoising the regular and chaotic signals using Empirical Mode Decomposition: Comparison and application
    Siwal, Davinder
    Suyal, Vinita
    Prasad, Awadhesh
    Mandal, S.
    Singh, R.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2013, 84 (07)
  • [37] APPLICATION OF MULTIVARIATE EMPIRICAL MODE DECOMPOSITION FOR CLEANING EYE BLINKS ARTIFACTS FROM EEG SIGNALS
    Gallego-Jutgla, Esteve
    Sole-Casals, Jordi
    Rutkowski, Tomasz M.
    Cichocki, Andrzej
    NCTA 2011: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NEURAL COMPUTATION THEORY AND APPLICATIONS, 2011, : 455 - 460
  • [38] An Improved Empirical Mode Decomposition for Power Analysis Attack
    Han Gan
    Hongxin Zhang
    Muhammad Saad khan
    Xueli Wang
    Fan Zhang
    Pengfei He
    中国通信, 2017, 14 (09) : 94 - 99
  • [39] An Improved Empirical Mode Decomposition for Power Analysis Attack
    Gan, Han
    Zhang, Hongxin
    Khan, Muhammad Saad
    Wang, Xueli
    Zhang, Fan
    He, Pengfei
    CHINA COMMUNICATIONS, 2017, 14 (09) : 94 - 99
  • [40] The Removal of EOG Artifacts From EEG Signals Using Independent Component Analysis and Multivariate Empirical Mode Decomposition
    Wang, Gang
    Teng, Chaolin
    Li, Kuo
    Zhang, Zhonglin
    Yan, Xiangguo
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2016, 20 (05) : 1301 - 1308