Production of a recombinant peroxidase in different glyco-engineered Pichia pastoris strains: a morphological and physiological comparison

被引:24
作者
Pekarsky, Alexander [1 ]
Veiter, Lukas [1 ,2 ]
Rajamanickam, Vignesh [1 ,2 ]
Herwig, Christoph [1 ,2 ]
Gruenwald-Gruber, Clemens [3 ]
Altmann, Friedrich [3 ]
Spadiut, Oliver [1 ]
机构
[1] Tech Univ Wien, Res Area Biochem Engn, Inst Chem Environm & Biosci Engn, Gumpendorfer Str 1a, A-1060 Vienna, Austria
[2] TU Wien, Christian Doppler Lab Mechanist & Physiol Methods, Gumpendorfer Str 1a, A-1060 Vienna, Austria
[3] Univ Nat Resources & Life Sci, Dept Chem, Muthgasse 18, A-1190 Vienna, Austria
基金
奥地利科学基金会;
关键词
Pichia pastoris; SuperMan(5); OCH1; Bioreactor; Cellular agglomeration; Flow cytometry; Glycosylation; Horseradish peroxidase; Morphology; N-LINKED GLYCOSYLATION; PLANT PEROXIDASE; BIOCHEMICAL-PROPERTIES; EXPRESSION; YEAST; PURIFICATION; INTEGRITY; PATHWAY; STRESS; OCH1;
D O I
10.1186/s12934-018-1032-6
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The methylotrophic yeast Pichia pastoris is a common host for the production of recombinant proteins. However, hypermannosylation hinders the use of recombinant proteins from yeast in most biopharmaceutical applications. Glyco-engineered yeast strains produce more homogeneously glycosylated proteins, but can be physiologically impaired and show tendencies for cellular agglomeration, hence are hard to cultivate. Further, comprehensive data regarding growth, physiology and recombinant protein production in the controlled environment of a bioreactor are scarce. A Man(5)GlcNAc(2) glycosylating and a Man(8-10)GlcNAc(2) glycosylating strain showed similar morphological traits during methanol induced shake-flask cultivations to produce the recombinant model protein HRP C1A. Both glyco-engineered strains displayed larger single and budding cells than a wild type strain as well as strong cellular agglomeration. The cores of these agglomerates appeared to be less viable. Despite agglomeration, the Man(5)GlcNAc(2) glycosylating strain showed superior growth, physiology and HRP C1A productivity compared to the Man(8-10)GlcNAc(2) glycosylating strain in shake-flasks and in the bioreactor. Conducting dynamic methanol pulsing revealed that HRP C1A productivity of the Man(5)GlcNAc(2) glycosylating strain is best at a temperature of 30 A degrees C. This study provides the first comprehensive evaluation of growth, physiology and recombinant protein production of a Man(5)GlcNAc(2) glycosylating strain in the controlled environment of a bioreactor. Furthermore, it is evident that cellular agglomeration is likely triggered by a reduced glycan length of cell surface glycans, but does not necessarily lead to lower metabolic activity and recombinant protein production. Man(5)GlcNAc(2) glycosylated HRP C1A production is feasible, yields active protein similar to the wild type strain, but thermal stability of HRP C1A is negatively affected by reduced glycosylation.
引用
收藏
页数:15
相关论文
共 46 条
[11]   At-line determination of spore inoculum quality in Penicillium chrysogenum bioprocesses [J].
Ehgartner, Daniela ;
Herwig, Christoph ;
Neutsch, Lukas .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2016, 100 (12) :5363-5373
[12]   Effects of different media supplements on the production of an active recombinant plant peroxidase in a Pichia pastoris Δoch1 strain [J].
Gmeiner, Christoph ;
Spadiut, Oliver .
BIOENGINEERED, 2015, 6 (03) :175-178
[13]   Development of a fed-batch process for a recombinant Pichia pastoris Δoch1 strain expressing a plant peroxidase [J].
Gmeiner, Christoph ;
Saadati, Amirhossein ;
Maresch, Daniel ;
Krasteva, Stanimira ;
Frank, Manuela ;
Altmann, Friedrich ;
Herwig, Christoph ;
Spadiut, Oliver .
MICROBIAL CELL FACTORIES, 2015, 14
[14]  
Gruber C, 2015, METHODS MOL BIOL, V1321, P407, DOI 10.1007/978-1-4939-2760-9_27
[15]   Glycosylation engineering in yeast: the advent of fully humanized yeast [J].
Hamilton, Stephen R. ;
Gerngross, Tillman U. .
CURRENT OPINION IN BIOTECHNOLOGY, 2007, 18 (05) :387-392
[16]   Humanization of yeast to produce complex terminally sialylated glycoproteins [J].
Hamilton, Stephen R. ;
Davidson, Robert C. ;
Sethuraman, Natarajan ;
Nett, Juergen H. ;
Jiang, Youwei ;
Rios, Sandra ;
Bobrowicz, Piotr ;
Stadheim, Terrance A. ;
Li, Huijuan ;
Choi, Byung-Kwon ;
Hopkins, Daniel ;
Wischnewski, Harry ;
Roser, Jessica ;
Mitchell, Teresa ;
Strawbridge, Rendall R. ;
Hoopes, Jack ;
Wildt, Stefan ;
Gerngross, Tillman U. .
SCIENCE, 2006, 313 (5792) :1441-1443
[17]   Production of sialylated O-linked glycans in Pichia pastoris [J].
Hamilton, Stephen R. ;
Cook, W. James ;
Gomathinayagam, Sujatha ;
Burnina, Irina ;
Bukowski, John ;
Hopkins, Daniel ;
Schwartz, Shaina ;
Du, Min ;
Sharkey, Nathan J. ;
Bobrowicz, Piotr ;
Wildt, Stefan ;
Li, Huijuan ;
Stadheim, Terrance A. ;
Nett, Juergen H. .
GLYCOBIOLOGY, 2013, 23 (10) :1192-1203
[18]   Interrelationship of Steric Stabilization and Self-Crowding of a Glycosylated Protein [J].
Hoiberg-Nielsen, R. ;
Westh, P. ;
Skov, L. K. ;
Arleth, L. .
BIOPHYSICAL JOURNAL, 2009, 97 (05) :1445-1453
[19]   Engineering complex-type N-glycosylation in Pichia pastoris using GlycoSwitch technology [J].
Jacobs, Pieter P. ;
Geysens, Steven ;
Vervecken, Wouter ;
Contreras, Roland ;
Callewaert, Nico .
NATURE PROTOCOLS, 2009, 4 (01) :58-70
[20]   Fed-batch fermentation of GM-CSF-producing glycoengineered Pichia pastoris under controlled specific growth rate [J].
Jacobs, Pieter P. ;
Inan, Mehmet ;
Festjens, Nele ;
Haustraete, Jurgen ;
Van Hecke, Annelies ;
Contreras, Roland ;
Meagher, Michael M. ;
Callewaert, Nico .
MICROBIAL CELL FACTORIES, 2010, 9