Ultra-high-temperature tantalum-hafnium carbonitride ceramics fabricated by combustion synthesis and spark plasma sintering

被引:20
作者
Buinevich, V. S. [1 ]
Nepapushev, A. A. [1 ]
Moskovskikh, D. O. [1 ]
Kuskov, K., V [1 ]
Yudin, S. N. [2 ,3 ]
Mukasyan, A. S. [4 ]
机构
[1] Natl Univ Sci & Technol MISiS, Ctr Funct Nanoceram, Moscow 119049, Russia
[2] LLC Metsintez, Tula 300041, Russia
[3] Tula State Univ, Tula 300012, Russia
[4] Univ Notre Dame, Dept Chem & Biomol Engn, Notre Dame, IN 46556 USA
基金
俄罗斯科学基金会;
关键词
Ultra-high-temperature ceramics; High-energy ball milling; Combustion synthesis; Spark plasma sintering; MECHANICAL-PROPERTIES; PHYSICAL-PROPERTIES; CARBIDE; TAC; BEHAVIOR; HFC; SHS; CONSOLIDATION; COMPOSITES; PHASE;
D O I
10.1016/j.ceramint.2021.07.180
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We report the fabrication of dense single-phase (Ta,Hf)CN carbonitride ceramics using a combination of combustion synthesis (CS) and spark plasma sintering (SPS). The ceramic powder was produced by high-energy ball milling of the reactants (Ta, Hf, C) in different atomic ratios followed by CS of the obtained nanostructured composites in a nitrogen atmosphere. X-ray diffraction analysis of the combustion products revealed the formation of (Ta,Hf)CN with cubic B1 structures as the dominant phases for all investigated compositions. The SPS of the as-synthesized powders allowed both homogenization of the composition and consolidation of the bulk single-phase carbonitride ceramics with a relative density of 98 +/- 1 %. Ta25Hf75CN showed the highest hardness (19.4 +/- 0.2 GPa) and fracture toughness (5.4 +/- 0.4 MPa m1/2) among the investigated composites and excellent oxidation resistance in air.
引用
收藏
页码:30043 / 30050
页数:8
相关论文
共 54 条
[1]   Nitrogenation of hafnium carbide powders in AC and DC plasma by Electrical Discharge Assisted Mechanical Milling [J].
Aisyah, I. S. ;
Wyszomirska, M. ;
Calka, A. ;
Wexler, D. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 715 :192-198
[2]  
Andrievskii R.A., 1967, POWDER MET MET CERAM, V6, P65, DOI [DOI 10.1007/BF00773385, 10.1007/BF00773385]
[3]  
[Anonymous], 2017, CONCISE ENCY SELF PR, DOI [10.1016/C2015-0-00439-7, DOI 10.1016/C2015-0-00439-7]
[4]  
[Anonymous], 1987, ASM HDB
[5]  
AVAKYAN AB, 1975, COMBUSTION PROCESSES, P98
[6]  
Bielawski M., 2009, COMPUTATIONAL EVALUA, DOI [10.2495/SECM090081, DOI 10.2495/SECM090081]
[7]   CHEMICAL CLASSES OF THE SHS PROCESSES AND MATERIALS [J].
BOROVINSKAYA, IP .
PURE AND APPLIED CHEMISTRY, 1992, 64 (07) :919-940
[8]   Mechanochemical synthesis and spark plasma sintering of hafnium carbonitride ceramics [J].
Buinevich, V. S. ;
Nepapushev, A. A. ;
Moskovskikh, D. O. ;
Trusov, G. V. ;
Kuskov, K. V. ;
Mukasyan, A. S. .
ADVANCED POWDER TECHNOLOGY, 2021, 32 (02) :385-389
[9]   Fabrication of ultra-high-temperature nonstoichiometric hafnium carbonitride via combustion synthesis and spark plasma sintering [J].
Buinevich, V. S. ;
Nepapushev, A. A. ;
Moskovskikh, D. O. ;
Trusov, G., V ;
Kuskov, K., V ;
Vadchenko, S. G. ;
Rogachev, A. S. ;
Mukasyan, A. S. .
CERAMICS INTERNATIONAL, 2020, 46 (10) :16068-16073
[10]   Sintering behaviour, solid solution formation and characterisation of TaC, HfC and TaC-HfC fabricated by spark plasma sintering [J].
Cedillos-Barraza, Omar ;
Grasso, Salvatore ;
Al Nasiri, Nasrin ;
Jayaseelan, Daniel D. ;
Reece, Michael J. ;
Lee, William E. .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2016, 36 (07) :1539-1548