Magnetic resonance imaging detection of tumor cells by targeting low-density lipoprotein receptors with Gd-loaded low-density lipoprotein particles

被引:58
作者
Crich, Simonetta Geninatti
Lanzardo, Stefania
Alberti, Diego
Belfiore, Simona
Ciampa, Anna
Giovenzanaz, Giovanni B.
Lovazzano, Clara
Pagliarin, Roberto
Aime, Silvio
机构
[1] Univ Turin, Ctr Mol Imaging, I-10126 Turin, Italy
[2] Univ Turin, Dept Chem IFM, Turin, Italy
[3] Univ Turin, Dept Clin & Biol Sci, Orbassano, Italy
[4] Uni Piemonte Orientale, Dipartimento Sci Chim Alimentari Farmaceut & Farm, Novara, Italy
[5] Univ Milan, Dipartimento Chim Organ Ind, Milan, Italy
来源
NEOPLASIA | 2007年 / 9卷 / 12期
关键词
magnetic resonance imaging; LDL; Gd complexes; tumor; dual imaging probe;
D O I
10.1593/neo.07682
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Gd-DO3A-diph and Gd-AAZTAC17 are lipophilic magnetic resonance imaging (MRI) agents that display high affinity for low-density lipoprotein (LDL) particles. However, on binding to LDL, Gd-DO3A-diph shows a decreased hydration that results in a lower enhancement of water proton relaxation rate. Conversely, Gd-AAZTAC17 displays a strong relaxation enhancement at the imaging fields. Each LDL particle can load up to 100 and 400 UNITS of Gd-DO3A-diph and Gd-AAZTAC17, respectively. Their LDL adducts are taken up by human hepatoblastoma G2 (HepG2) and melanoma B16 tumor cells when added to the incubation medium. T-1 measurements of the labeled cells indicate that Gd-AAZTAC17 is significantly more efficient than Gd-DO3A-diph. Furthermore, it has been found that HepG2 hepatoma cells can internalize higher amounts of Gd-AAZTAC17 than B16 cells and the involvement of LDL receptors (LDLRs) has been demonstrated in competition assays with free LDL. Gd-AAZTAC17/LDL adduct proved to be an efficient probe in the magnetic resonance (MR) visualization of subcutaneous tumors in animal models obtained by injecting B16 melanoma cells into the right flank of mice. Finally, confocal microscopy validation of the distribution of LDL-based probes in the tumor has been obtained by doping the Gd-AAZTAC17/LDL adduct with a fluorescent phospholipid moiety.
引用
收藏
页码:1046 / 1056
页数:11
相关论文
共 50 条
  • [11] Oxidized low-density lipoprotein in postmenopausal women
    Kork, Felix
    Jankowski, Vera
    Just, Alexander R.
    Pfeilschifter, Johannes
    Tepel, Martin
    Zidek, Walter
    Jankowski, Joachim
    JOURNAL OF HYPERTENSION, 2014, 32 (07) : 1444 - 1449
  • [12] Regulation of low-density lipoprotein subfractions by carbohydrates
    Gerber, Philipp A.
    Berneis, Kaspar
    CURRENT OPINION IN CLINICAL NUTRITION AND METABOLIC CARE, 2012, 15 (04) : 381 - 385
  • [13] Identification of a loss-of-function inducible degrader of the low-density lipoprotein receptor variant in individuals with low circulating low-density lipoprotein
    Sorrentino, Vincenzo
    Fouchier, Sigrid W.
    Motazacker, Mohammad M.
    Nelson, Jessica K.
    Defesche, Joep C.
    Dallinga-Thie, Geesje M.
    Kastelein, John J. P.
    Hovingh, G. Kees
    Zelcer, Noam
    EUROPEAN HEART JOURNAL, 2013, 34 (17) : 1292 - +
  • [14] Ablation of Plasma Prekallikrein Decreases Low-Density Lipoprotein Cholesterol by Stabilizing Low-Density Lipoprotein Receptor and Protects Against Atherosclerosis
    Wang, Jin-Kai
    Li, Yang
    Zhao, Xiao-Lu
    Liu, Yuan-Bin
    Tan, Jing
    Xing, Yu-Ying
    Adi, Dilare
    Wang, Yong-Tao
    Fu, Zhen-Yan
    Ma, Yi-Tong
    Liu, Song-Mei
    Liu, Yong
    Wang, Yan
    Shi, Xiong-Jie
    Lu, Xiao-Yi
    Song, Bao-Liang
    Luo, Jie
    CIRCULATION, 2022, 145 (09) : 675 - 687
  • [15] Proteomic analysis of electronegative low-density lipoprotein
    Bancells, Cristina
    Canals, Francesc
    Benitez, Sonia
    Colome, Nuria
    Julve, Josep
    Ordonez-Llanos, Jordi
    Luis Sanchez-Quesada, Jose
    JOURNAL OF LIPID RESEARCH, 2010, 51 (12) : 3508 - 3515
  • [16] Effect of oxidized low-density lipoprotein concentration polarization on human smooth muscle cells' proliferation, cycle, apoptosis and oxidized low-density lipoprotein uptake
    Ding, Zufeng
    Liu, Shijie
    Yang, Bo
    Fan, Yubo
    Deng, Xiaoyan
    JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2012, 9 (71) : 1233 - 1240
  • [17] N-Glycosylation Defects in Humans Lower Low-Density Lipoprotein Cholesterol Through Increased Low-Density Lipoprotein Receptor Expression
    van den Boogert, Marjolein A. W.
    Larsen, Lars E.
    Ali, Lubna
    Kuil, Sacha D.
    Chong, Patrick L. W.
    Loregger, Anke
    Kroon, Jeffrey
    Schnitzler, Johan G.
    Schimmel, Alinda W. M.
    Peter, Jorge
    Levels, Johannes H. M.
    Steenbergen, Gerry
    Morava, Eva
    Dallinga-Thie, Geesje M.
    Wevers, Ron A.
    Kuivenhoven, Jan Albert
    Hand, Nicholas J.
    Zelcer, Noam
    Rader, Daniel J.
    Stroes, Erik S. G.
    Lefeber, Dirk J.
    Holleboom, Adriaan G.
    CIRCULATION, 2019, 140 (04) : 280 - 292
  • [18] Oxidation of low-density lipoprotein by hemoglobin-hemichrome
    Bamm, VV
    Tsemakhovich, VA
    Shaklai, N
    INTERNATIONAL JOURNAL OF BIOCHEMISTRY & CELL BIOLOGY, 2003, 35 (03) : 349 - 358
  • [19] Oxidized Low-Density Lipoprotein Promotes In Vitro Calcification
    Yamashita, Mamiko
    Nomura, Yoshiaki
    Ishikawa, Misao
    Shimoda, Shinji
    Hanada, Nobuhiro
    MATERIALS, 2020, 13 (22) : 1 - 12
  • [20] Dietary and genetic effects on low-density lipoprotein heterogeneity
    Krauss, RM
    ANNUAL REVIEW OF NUTRITION, 2001, 21 : 283 - 295