Low-Cost and Confidentiality-Preserving Data Acquisition for Internet of Multimedia Things

被引:87
作者
Zhang, Yushu [1 ,2 ]
He, Qi [1 ]
Xiang, Yong [2 ]
Zhang, Leo Yu [2 ]
Liu, Bo [3 ]
Chen, Junxin [4 ]
Xie, Yiyuan [1 ]
机构
[1] Southwest Univ, Chongqing Univ, Sch Elect & Informat Engn, Key Lab Networks & Cloud Comp Secur, Chongqing 400715, Peoples R China
[2] Deakin Univ, Sch Informat Technol, Geelong, Vic 3125, Australia
[3] La Trobe Univ, Dept Engn, Melbourne, Vic 3086, Australia
[4] Northeastern Univ, Sinodutch Biomed & Informat Engn Sch, Shenyang 110169, Liaoning, Peoples R China
来源
IEEE INTERNET OF THINGS JOURNAL | 2018年 / 5卷 / 05期
基金
中国国家自然科学基金;
关键词
Big image data; chaotic encryption; compressive sensing (CS); Internet of Multimedia Things (IoMT); FRACTIONAL MELLIN TRANSFORM; EFFICIENT IMAGE ENCRYPTION; DATA AGGREGATION; CHAOTIC SYSTEM; MAP; RECONSTRUCTION; COMPRESSION; DIFFUSION; SECURE;
D O I
10.1109/JIOT.2017.2781737
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Internet of Multimedia Things (IoMT) faces the challenge of how to realize low-cost data acquisition while still preserve data confidentiality. In this paper, we present a lowcost and confidentiality-preserving data acquisition framework for IoMT. First, we harness chaotic convolution and random subsampling to capture multiple image signals. The measurement matrix is under the control of chaos, ensuring the security of the sampling process. Next, we assemble these sampled images into a big master image, and then encrypt this master image based on Arnold transform and single value diffusion. The computation of these two transforms only requires some lowcomplexity operations. Finally, the encrypted image is delivered to cloud servers for storage and decryption service. Experimental results demonstrate the security and effectiveness of the proposed framework.
引用
收藏
页码:3442 / 3451
页数:10
相关论文
共 53 条
[1]   Internet of multimedia things: Vision and challenges [J].
Alvi, Sheeraz A. ;
Afzal, Bilal ;
Shah, Ghalib A. ;
Atzori, Luigi ;
Mahmood, Waqar .
AD HOC NETWORKS, 2015, 33 :87-111
[2]   Variational Bayesian Blind Deconvolution Using a Total Variation Prior [J].
Babacan, S. Derin ;
Molina, Rafael ;
Katsaggelos, Aggelos K. .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2009, 18 (01) :12-26
[3]  
Bianchi Tiziano, 2014, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), P3992, DOI 10.1109/ICASSP.2014.6854351
[4]   Analysis of One-Time Random Projections for Privacy Preserving Compressed Sensing [J].
Bianchi, Tiziano ;
Bioglio, Valerio ;
Magli, Enrico .
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2016, 11 (02) :313-327
[5]   On Known-Plaintext Attacks to a Compressed Sensing-Based Encryption: A Quantitative Analysis [J].
Cambareri, Valerio ;
Mangia, Mauro ;
Pareschi, Fabio ;
Rovatti, Riccardo ;
Setti, Gianluca .
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2015, 10 (10) :2182-2195
[6]   Low-Complexity Multiclass Encryption by Compressed Sensing [J].
Cambareri, Valerio ;
Mangia, Mauro ;
Pareschi, Fabio ;
Rovatti, Riccardo ;
Setti, Gianluca .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2015, 63 (09) :2183-2195
[7]   Robust uncertainty principles:: Exact signal reconstruction from highly incomplete frequency information [J].
Candès, EJ ;
Romberg, J ;
Tao, T .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (02) :489-509
[8]   Decoding by linear programming [J].
Candes, EJ ;
Tao, T .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (12) :4203-4215
[9]   A visually secure image encryption scheme based on compressive sensing [J].
Chai, Xiuli ;
Gan, Zhihua ;
Chen, Yiran ;
Zhang, Yushu .
SIGNAL PROCESSING, 2017, 134 :35-51
[10]   Private data aggregation with integrity assurance and fault tolerance for mobile crowd-sensing [J].
Chen, Jianwei ;
Ma, Huadong ;
Zhao, Dong .
WIRELESS NETWORKS, 2017, 23 (01) :131-144