Machine-Learning-Based Prediction of Corrosion Behavior in Additively Manufactured Inconel 718

被引:21
作者
Mythreyi, O., V [1 ]
Srinivaas, M. Rohith [2 ]
Kumar, Tigga Amit [3 ]
Jayaganthan, R. [1 ]
机构
[1] Indian Inst Technol Madras, Dept Engn Design, Chennai 600036, Tamil Nadu, India
[2] Indian Inst Technol Madras, Dept Met & Mat Engn, Chennai 600036, Tamil Nadu, India
[3] Gas Turbine Res Estab Res & Dev Org, Bengaluru 560093, India
关键词
selective laser melting; Inconel; 718; machine learning; corrosion prediction; extreme gradient boosting; SURFACE-ROUGHNESS; GAS-INDUSTRY; OIL; MICROSTRUCTURE; RATES; DEFORMATION; INHIBITORS; MODELS;
D O I
10.3390/data6080080
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This research work focuses on machine-learning-assisted prediction of the corrosion behavior of laser-powder-bed-fused (LPBF) and postprocessed Inconel 718. Corrosion testing data of these specimens were collected and fit into the following machine learning algorithms: polynomial regression, support vector regression, decision tree, and extreme gradient boosting. The model performance, after hyperparameter optimization, was evaluated using a set of established metrics: R-2, mean absolute error, and root mean square error. Among the algorithms, the extreme gradient boosting algorithm performed best in predicting the corrosion behavior, closely followed by other algorithms. Feature importance analysis was executed in order to determine the postprocessing parameters that influenced the most the corrosion behavior in Inconel 718 manufactured by LPBF.
引用
收藏
页数:16
相关论文
共 66 条
[1]   MEASUREMENT MODELS FOR ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY .1. DEMONSTRATION OF APPLICABILITY [J].
AGARWAL, P ;
ORAZEM, ME ;
GARCIARUBIO, LH .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1992, 139 (07) :1917-1927
[2]  
Akca E., 2015, Periodicals of Engineering and Natural Sciences (PEN), DOI DOI 10.21533/PEN.V3I1.43
[3]  
AlMangour B., 2019, Additive manufacturing of emerging materials, DOI [10.1007/978-3-319-91713-9, DOI 10.1007/978-3-319-91713-9]
[4]   Combination of high feed turning with cryogenic cooling on Haynes 263 and Inconel 718 superalloys [J].
Amigo, F. J. ;
Urbikain, G. ;
Pereira, O. ;
Fernandez-Lucio, P. ;
Fernandez-Valdivielso, A. ;
Lopez de Lacalle, L. N. .
JOURNAL OF MANUFACTURING PROCESSES, 2020, 58 :208-222
[5]   Numerical and experimental analysis of surface roughness generated by shot peening [J].
Bagherifard, Sara ;
Ghelichi, Ramin ;
Guagliano, Mario .
APPLIED SURFACE SCIENCE, 2012, 258 (18) :6831-6840
[6]   Machine learning for molecular and materials science [J].
Butler, Keith T. ;
Davies, Daniel W. ;
Cartwright, Hugh ;
Isayev, Olexandr ;
Walsh, Aron .
NATURE, 2018, 559 (7715) :547-555
[7]   Feature selection in machine learning: A new perspective [J].
Cai, Jie ;
Luo, Jiawei ;
Wang, Shulin ;
Yang, Sheng .
NEUROCOMPUTING, 2018, 300 :70-79
[8]   A New Approach in the Design of Microstructured Ultralight Components to Achieve Maximum Functional Performance [J].
Calleja-Ochoa, Amaia ;
Gonzalez-Barrio, Haizea ;
Lopez de Lacalle, Norberto ;
Martinez, Silvia ;
Albizuri, Joseba ;
Lamikiz, Aitzol .
MATERIALS, 2021, 14 (07)
[9]   Electrochemical Impedance Spectroscopy [J].
Chang, Byoung-Yong ;
Park, Su-Moon .
ANNUAL REVIEW OF ANALYTICAL CHEMISTRY, VOL 3, 2010, 3 :207-229
[10]   Microstructural evolution and mechanical properties of selective laser melted a nickel-based superalloy after post treatment [J].
Chen, Lan ;
Sun, Yuzhou ;
Li, Lin ;
Ren, Xudong .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2020, 792