Self-healing polymers with nanomaterials and nanostructures

被引:88
|
作者
Zhai, Lei [1 ,2 ,3 ]
Narkar, Ameya [2 ]
Ahn, Kollbe [2 ]
机构
[1] Univ Cent Florida, NanoSci Technol Ctr, Orlando, FL 32826 USA
[2] Univ Cent Florida, Dept Chem, Orlando, FL 32826 USA
[3] Univ Cent Florida, Dept Mat Sci & Engn, Orlando, FL 32826 USA
关键词
Self-healing polymers; Nanomaterials; Nanostructure; Flexible electronics; Energy storage; 3D printing; CROSS-LINKING; CORROSION PROTECTION; GOLD NANOPARTICLES; STRAIN SENSORS; SHAPE-MEMORY; COMPOSITE; COATINGS; NANOCOMPOSITE; POLYURETHANE; CHEMISTRY;
D O I
10.1016/j.nantod.2019.100826
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Self-healing polymers have attracted a lot of attentions in the past two decades, driven by their intriguing applications, new synthetic approaches and understanding of nanoscale mechanism and discovery of nanomaterials. Nanomaterials and nanostructures in polymers provide large surface area, rich functional groups and unique properties that facilitate the healing process. This review provides an introduction of the key studies from a historical standpoint and the chronological advancement of the design philosophy behind self-healing phenomena of polymers. Recent advance in utilizing nanomaterials and nanostructures to facilitate the healing and introduce novel functionalities in self-healing polymers is extensively reviewed. In addition, innovative characterization methods are employed to analyze and understand the underlying polymer chain interactions occurring at the interface at micro- and nanoscale. The knowledge of the healing process at the nanoscopic level and the contribution of nanomaterials and nanostructures in self-healing has greatly advanced the design, fabrication and application of self-healing polymers. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] The way to autonomic self-healing polymers and composites
    Pegoretti, A.
    EXPRESS POLYMER LETTERS, 2009, 3 (02): : 62 - 62
  • [42] Biomimetic design of dynamic and self-healing polymers
    Guan, Zhibin
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 243
  • [43] On the molecular mechanism of self-healing of glassy polymers
    Boiko, Yuri M.
    COLLOID AND POLYMER SCIENCE, 2016, 294 (07) : 1237 - 1242
  • [44] Theoretical consideration and modeling of self-healing polymers
    Zhang, Ming Qiu
    Rong, Min Zhi
    JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 2012, 50 (04) : 229 - 241
  • [45] Self-Healing Polymers and Composites: Extrinsic Routes
    Agrawal, Nidhi
    Arora, Bharti
    MINI-REVIEWS IN ORGANIC CHEMISTRY, 2022, 19 (04) : 496 - 512
  • [46] Chemistry of Crosslinking Processes for Self-Healing Polymers
    Billiet, Stijn
    Hillewaere, Xander K. D.
    Teixeira, Roberto F. A.
    Du Prez, Filip E.
    MACROMOLECULAR RAPID COMMUNICATIONS, 2013, 34 (04) : 290 - 309
  • [47] Leaf-Inspired Self-Healing Polymers
    Yang, Ying
    Davydovich, Dmitriy
    Hornat, Chris C.
    Liu, Xiaolin
    Urban, Marek W.
    CHEM, 2018, 4 (08): : 1928 - 1936
  • [48] High-Performance Self-Healing Polymers
    Peng, Yan
    Gu, Shiyu
    Wu, Qi
    Xie, Zhengtian
    Wu, Jinrong
    ACCOUNTS OF MATERIALS RESEARCH, 2023, 4 (04): : 323 - 333
  • [49] A review on self-healing polymers for soft robotics
    Terryn, Seppe
    Langenbach, Jakob
    Roels, Ellen
    Brancart, Joost
    Bakkali-Hassani, Camille
    Poutrel, Quentin-Arthur
    Georgopoulou, Antonia
    Thuruthel, Thomas George
    Safaei, Ali
    Ferrentino, Pasquale
    Sebastian, Tutu
    Norvez, Sophie
    Iida, Fumiya
    Bosman, Anton W.
    Tournilhac, Francois
    Clemens, Frank
    Van Assche, Guy
    Vanderborght, Bram
    MATERIALS TODAY, 2021, 47 : 187 - 205
  • [50] Self-Healing of Polymers via Supramolecular Chemistry
    Yang, Ying
    Urban, Marek W.
    ADVANCED MATERIALS INTERFACES, 2018, 5 (17):