Extended dynamic mode decomposition with dictionary learning using neural ordinary differential equations

被引:3
作者
Terao, Hiroaki [1 ]
Shirasaka, Sho [1 ]
Suzuki, Hideyuki [1 ]
机构
[1] Osaka Univ, Grad Sch Informat Sci & Technol, 1-5 Yamadaoka, Suita, Osaka 5650871, Japan
来源
IEICE NONLINEAR THEORY AND ITS APPLICATIONS | 2021年 / 12卷 / 04期
关键词
time series analysis; Koopman operator; extended dynamic mode decomposition; machine learning; dictionary learning; neural ordinary differential equations; SYSTEMS;
D O I
10.1587/nolta.12.626
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Nonlinear phenomena can be analyzed via linear techniques using operator-theoretic approaches. Data-driven method called the extended dynamic mode decomposition (EDMD) and its variants, which approximate the Koopman operator associated with the nonlinear phenomena, have been rapidly developing by incorporating machine learning methods. Neural ordinary differential equations (NODEs), which are a neural network equipped with a continuum of layers, and have high parameter and memory efficiencies, have been proposed. In this paper, we propose an algorithm to perform EDMD using NODEs. NODEs are used to find a parameter-efficient dictionary which provides a good finite-dimensional approximation of the Koopman operator. We show the superiority of the parameter efficiency of the proposed method through numerical experiments.
引用
收藏
页码:626 / 638
页数:13
相关论文
共 25 条
  • [1] [Anonymous], 2004, NONLINEAR TIME SERIE, DOI DOI 10.1017/CBO9780511755798
  • [2] Applied Koopmanism
    Budisic, Marko
    Mohr, Ryan
    Mezic, Igor
    [J]. CHAOS, 2012, 22 (04)
  • [3] An Overview of Recent Progress in the Study of Distributed Multi-Agent Coordination
    Cao, Yongcan
    Yu, Wenwu
    Ren, Wei
    Chen, Guanrong
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2013, 9 (01) : 427 - 438
  • [4] Chen RTQ, 2018, 32 C NEURAL INFORM P, V31
  • [5] Dormand J., 1980, J. Comput. Appl. Math, V6, P19, DOI [10.1016/0771-050X(80)90013-3, DOI 10.1016/0771-050X(80)90013-3, 10.1016/0771-050X(8090013-3]
  • [6] Goodfellow I, 2016, ADAPT COMPUT MACH LE, P1
  • [7] Ikeguchi T., 2000, KAOSU JIKEIRETSU NO
  • [8] A coherent Ising machine for 2000-node optimization problems
    Inagaki, Takahiro
    Haribara, Yoshitaka
    Igarashi, Koji
    Sonobe, Tomohiro
    Tamate, Shuhei
    Honjo, Toshimori
    Marandi, Alireza
    McMahon, Peter L.
    Umeki, Takeshi
    Enbutsu, Koji
    Tadanaga, Osamu
    Takenouchi, Hirokazu
    Aihara, Kazuyuki
    Kawarabayashi, Ken-ichi
    Inoue, Kyo
    Utsunomiya, Shoko
    Takesue, Hiroki
    [J]. SCIENCE, 2016, 354 (6312) : 603 - 606
  • [9] Kingma DP, 2015, C TRACK P
  • [10] Kuramoto Y., 2013, Dover Books on Chemistry Series