Higher-rank zeta functions for elliptic curves

被引:1
作者
Weng, Lin [1 ]
Zagier, Don [2 ,3 ]
机构
[1] Kyushu Univ, Grad Sch Math, Fukuoka 8190395, Japan
[2] Max Planck Inst Math, D-53111 Bonn, Germany
[3] Abdus Salaam Int Ctr Theoret Phys, Math Sect, I-34151 Trieste, Italy
基金
日本学术振兴会;
关键词
elliptic curves over finite fields; semistable bundles; higher-rank zeta functions; Riemann hypothesis; HEURISTICS;
D O I
10.1073/pnas.1912023117
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In earlier work by L.W., a nonabelian zeta function was defined for any smooth curve X over a finite field F-q and any integer n >= 1 by zeta X/Fq,n(s) = Sigma([V])vertical bar H-0(X, V)\{0}vertical bar/vertical bar Aut(V) q-deg(V)s (R(s) > 1), where the sum is over isomorphism classes of F-q-rational semistable vector bundles V of rank n on X with degree divisible by n. This function, which agrees with the usual Artin zeta function of X/F-q if n = 1, is a rational function of q(-s) with denominator (1 - q(-ns))(1 - q(n-ns)) and conjecturally satisfies the Riemann hypothesis. In this paper we study the case of genus 1 curves in detail. We show that in that case the Dirichlet series 3(X)/F-q (s) =Sigma(vertical bar V vertical bar) 1/vertical bar Aut(V) q(-rank(V)s) (R(s) > 0), where the sum is now over isomorphism classes of F-q-rational semistable vector bundles V of degree 0 on X, is equal to Pi(infinity)(k=1) zeta X/F-q (s + k), and use this fact to prove the Riemann hypothesis for zeta(X,n)(s) for all n.
引用
收藏
页码:4546 / 4558
页数:13
相关论文
共 11 条
  • [1] Atiyah M. F., 1957, P LOND MATH SOC, V7, P414, DOI 10.1112/plms/s3-7.1.414
  • [2] COHEN H, 1984, LECT NOTES MATH, V1068, P33
  • [3] COHEN H, 1984, LECT NOTES MATH, V1052, P26
  • [4] POINCARE POLYNOMIALS OF VARIETY OF STABLE BUNDLES
    DESALE, UV
    RAMANAN, S
    [J]. MATHEMATISCHE ANNALEN, 1975, 216 (03) : 233 - 244
  • [5] COHOMOLOGY GROUPS OF MODULI SPACES OF VECTOR BUNDLES ON CURVES
    HARDER, G
    NARASIMHAN, MS
    [J]. MATHEMATISCHE ANNALEN, 1975, 212 (03) : 215 - 248
  • [6] Weng L, 2005, AM J MATH, V127, P973
  • [7] Weng L., 2012, ARXIV12023183
  • [8] Higher-rank zeta functions and SLn-zeta functions for curves
    Weng, Lin
    Zagier, Don
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (12) : 6398 - 6408
  • [9] Weng L, 2010, ADV STU P M, V58, P173
  • [10] Zagier D., 1993, ISRAEL MATH C P, V9, P445