Spatio-temporal multi-task network cascade for accurate assessment of cardiac CT perfusion

被引:5
作者
Chen, Jiaqi [1 ]
Zhang, Pengfei [2 ,3 ]
Liu, Huafeng [4 ]
Xu, Lei [5 ]
Zhang, Heye [1 ]
机构
[1] Sun Yat Sen Univ, Sch Biomed Engn, Guangzhou, Peoples R China
[2] Shandong Univ, Key Lab Cardiovasc Remodeling & Funct Res,Qilu Ho, Chinese Minist Educ,State & Shandong Prov Joint K, Chinese Natl Hlth Commiss,Dept Cardiol, Shanodng, Peoples R China
[3] Shandong Univ, Chinese Acad Med Sci, State & Shandong Prov Joint Key Lab Translat Card, Dept Cardiol,Qilu Hosp, Shanodng, Peoples R China
[4] Zhejiang Univ, Coll Opt Sci & Engn, State Key Lab Modern Opt Instrumentat, Hangzhou 310027, Peoples R China
[5] Capital Med Univ, Beijing Anzhen Hosp, Dept Radiol, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Myocardial perfusion; Spatiotemporal representation; Multitask network cascade; CORONARY-ARTERY-DISEASE; MYOCARDIAL-PERFUSION; QUANTITATIVE ASSESSMENT; DIAGNOSTIC-ACCURACY; MEDICAL THERAPY; PREDICTION; MRI; QUANTIFICATION; ISCHEMIA; LESION;
D O I
10.1016/j.media.2021.102207
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The assessment of myocardial perfusion has become increasingly important in the early diagnosis of coronary artery disease. Currently, the process of perfusion assessment is time-consuming and subjective. Although automated methods by threshold processing have been proposed, they cannot obtain an accurate perfusion assessment. Thus, there is a great clinical demand to obtain a rapid and accurate assessment of myocardial perfusion through a standard procedure using an automated algorithm. In this work, we present a spatio-temporal multi-task network cascade (ST-MNC) to provide an accurate and robust assessment of myocardial perfusion. The proposed network captures patch-based spatio-temporal representations for each pixel through a spatio-temporal encoder-decoder network. Then the multi-task network cascade uses spatio-temporal representations as shared features to predict various perfusion parameters and myocardial ischemic regions. Extensive experiments on CT images of 232 subjects demonstrate STMNC could produce a good approximation for perfusion parameters and an accurate classification for ischemic regions. These results show that our proposed method can provide a fast and accurate assessment of myocardial perfusion. (c) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:16
相关论文
共 70 条
  • [1] Perfusion quantification using Gaussian process deconvolution
    Andersen, IK
    Szymkowiak, A
    Rasmussen, CE
    Hanson, LG
    Marstrand, JR
    Larsson, HBW
    Hansen, LK
    [J]. MAGNETIC RESONANCE IN MEDICINE, 2002, 48 (02) : 351 - 361
  • [2] [Anonymous], 2015, ARXIV PREPRINT ARXIV
  • [3] [Anonymous], 2016, TensorFlow: large-scale machine learning on heterogeneous distributed systems
  • [4] Spatio-Temporal Convolutional Sparse Auto-Encoder for Sequence Classification
    Baccouche, Moez
    Mamalet, Franck
    Wolf, Christian
    Garcia, Christophe
    Baskurt, Atilla
    [J]. PROCEEDINGS OF THE BRITISH MACHINE VISION CONFERENCE 2012, 2012,
  • [5] SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation
    Badrinarayanan, Vijay
    Kendall, Alex
    Cipolla, Roberto
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) : 2481 - 2495
  • [6] Detection of Hemodynamically Significant Coronary Artery Stenosis: Incremental Diagnostic Value of Dynamic CT-based Myocardial Perfusion Imaging
    Bamberg, Fabian
    Becker, Alexander
    Schwarz, Florian
    Marcus, Roy P.
    Greif, Martin
    von Ziegler, Franz
    Blankstein, Ron
    Hoffmann, Udo
    Sommer, Wieland H.
    Hoffmann, Verena S.
    Johnson, Thorsten R. C.
    Becker, Hans-Christoph R.
    Wintersperger, Bernd J.
    Reiser, Maximilian F.
    Nikolaou, Konstantin
    [J]. RADIOLOGY, 2011, 260 (03) : 689 - 698
  • [7] Adenosine-Stress Dynamic Myocardial CT Perfusion Imaging Initial Clinical Experience
    Bastarrika, Gorka
    Ramos-Duran, Luis
    Rosenblum, Michael A.
    Kang, Doo Kyoung
    Rowe, Garrett W.
    Schoepf, U. Joseph
    [J]. INVESTIGATIVE RADIOLOGY, 2010, 45 (06) : 306 - 313
  • [8] Quantitative assessment of myocardial perfusion abnormality on SPECT myocardial perfusion imaging is more reproducible than expert visual analysis
    Berman, Daniel S.
    Kang, Xingping
    Gransar, Heidi
    Gerlach, James
    Friedman, John D.
    Hayes, Sean W.
    Thomson, Louise E. J.
    Hachamovitch, Rory
    Shaw, Leslee J.
    Slomka, Piotr J.
    De Yang, Ling
    Germano, Guido
    [J]. JOURNAL OF NUCLEAR CARDIOLOGY, 2009, 16 (01) : 45 - 53
  • [9] Quantitative Myocardial Perfusion Imaging Versus Visual Analysis in Diagnosing Myocardial Ischemia A CE-MARC Substudy
    Biglands, John D.
    Ibraheem, Montasir
    Magee, Derek R.
    Radjenovic, Aleksandra
    Plein, Sven
    Greenwood, John P.
    [J]. JACC-CARDIOVASCULAR IMAGING, 2018, 11 (05) : 711 - 718
  • [10] Boink Y.E., 2019, ARXIV PREPRINT ARXIV