Implicit a posteriori error estimation in cut finite elements

被引:5
作者
Sun, Haohan [1 ]
Schillinger, Dominik [2 ,3 ]
Yuan, Si [1 ]
机构
[1] Tsinghua Univ, Dept Civil Engn, Beijing 100084, Peoples R China
[2] Leibniz Univ Hannover, Dept Civil Engn & Geodet Sci, Inst Mech & Computat Mech, D-30167 Hannover, Germany
[3] Univ Minnesota, Dept Civil Environm & Geoengn, 500 Pillsbury Dr SE, Minneapolis, MN 55455 USA
基金
欧洲研究理事会; 欧盟地平线“2020”; 美国国家科学基金会;
关键词
A posteriori error estimation; Cut finite elements; Residual-driven correction; Finite cell method; Mesh adaptivity; SUPERCONVERGENT PATCH RECOVERY; DIRICHLET BOUNDARY-CONDITIONS; ROBUST NITSCHES FORMULATION; CELL METHOD; ISOGEOMETRIC ANALYSIS; LINEAR ELASTICITY; ELLIPTIC PROBLEMS; MESH ADAPTIVITY; EQUILIBRIUM; DISCRETIZATION;
D O I
10.1007/s00466-019-01803-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We describe a strategy for implicit a posteriori error estimation in cut finite elements. Our approach is based on the definition of local residual-driven corrector problems that use a local order elevation of the finite element space to construct a correction of the current approximation. The recovered higher-order accurate approximation is then used to construct error estimation in energy norm. We discuss implications of this scheme in the presence of cut elements, for instance regarding the construction of local corrector regions or the imposition of local boundary conditions. Combining the estimator with the finite cell method and a mesh refinement scheme, we numerically demonstrate its effectivity in terms of predicting the true error and its suitability to steer mesh adaptivity. Our results confirm that the estimation achieves the same effectivity in cut meshes as in standard boundary-fitted meshes, irrespective of the polynomial degree.
引用
收藏
页码:967 / 988
页数:22
相关论文
共 86 条
  • [1] Ainsworth M., 2000, PUR AP M-WI
  • [2] A robust Nitsche's formulation for interface problems
    Annavarapu, Chandrasekhar
    Hautefeuille, Martin
    Dolbow, John E.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2012, 225 : 44 - 54
  • [3] [Anonymous], 1991, Finite Element Analysis
  • [4] Babuska I, 1997, INT J NUMER METH ENG, V40, P2521, DOI 10.1002/(SICI)1097-0207(19970730)40:14<2521::AID-NME181>3.0.CO
  • [5] 2-A
  • [6] ERROR ESTIMATES FOR ADAPTIVE FINITE-ELEMENT COMPUTATIONS
    BABUSKA, I
    RHEINBOLDT, WC
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1978, 15 (04) : 736 - 754
  • [7] A-POSTERIORI ERROR ESTIMATES FOR FINITE-ELEMENT METHOD
    BABUSKA, I
    RHEINBOLDT, WC
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1978, 12 (10) : 1597 - 1615
  • [8] Shape optimisation with multiresolution subdivision surfaces and immersed finite elements
    Bandara, Kosala
    Rueberg, Thomas
    Cirak, Fehmi
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2016, 300 : 510 - 539
  • [9] Weak imposition of Dirichlet boundary conditions in fluid mechanics
    Bazilevs, Y.
    Hughes, T. J. R.
    [J]. COMPUTERS & FLUIDS, 2007, 36 (01) : 12 - 26
  • [10] Becker R, 2001, ACT NUMERIC, V10, P1, DOI 10.1017/S0962492901000010