On the Rigidity of Gradient Ricci Solitons

被引:0
作者
Fernandez-Lopez, Manuel [1 ]
Garcia-Rio, Eduardo [2 ]
机构
[1] Xunta Galicia, Conselleria Educ, La Coruna, Spain
[2] Univ Santiago de Compostela, Fac Math, La Coruna, Spain
来源
Extended Abstracts Fall 2013: Geometrical Analysis; Type Theory, Homotopy Theory and Univalent Foundations | 2015年
关键词
ROTATIONAL SYMMETRY; SHRINKING SOLITONS; CLASSIFICATION;
D O I
10.1007/978-3-319-21284-5_2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A complete Riemannian manifold (M, g) is said to be a gradient Ricci soliton if there exists a smooth function such that where Rc denotes the Ricci tensor, H f is the Hessian of the function f, and is a real number. © 2015 Springer International Publishing Switzerland.
引用
收藏
页码:9 / 13
页数:5
相关论文
共 20 条
[1]  
Brendle S, 2014, J DIFFER GEOM, V97, P191
[2]   Rotational symmetry of self-similar solutions to the Ricci flow [J].
Brendle, Simon .
INVENTIONES MATHEMATICAE, 2013, 194 (03) :731-764
[3]  
Cao H.-D, 2010, ADV LECT MATH ALM, V11
[4]  
Cao H.-D., 2008, SURVEYS DIFFERENTIAL, V12, P47
[5]   Bach-flat gradient steady Ricci solitons [J].
Cao, Huai-Dong ;
Catino, Giovanni ;
Chen, Qiang ;
Mantegazza, Carlo ;
Mazzieri, Lorenzo .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2014, 49 (1-2) :125-138
[6]   ON LOCALLY CONFORMALLY FLAT GRADIENT SHRINKING RICCI SOLITONS [J].
Cao, Xiaodong ;
Wang, Biao ;
Zhang, Zhou .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2011, 13 (02) :269-282
[7]   On Four-Dimensional Anti-self-dual Gradient Ricci Solitons [J].
Chen, Xiuxiong ;
Wang, Yuanqi .
JOURNAL OF GEOMETRIC ANALYSIS, 2015, 25 (02) :1335-1343
[8]  
Chow B., 2006, GRADUATES STUDIES MA
[9]   Ricci solitons: the equation point of view [J].
Eminenti, Manolo ;
La Nave, Gabriele ;
Mantegazza, Carlo .
MANUSCRIPTA MATHEMATICA, 2008, 127 (03) :345-367
[10]   A note on locally conformally flat gradient Ricci solitons [J].
Fernandez-Lopez, Manuel ;
Garcia-Rio, Eduardo .
GEOMETRIAE DEDICATA, 2014, 168 (01) :1-7