Spectral theory of pseudo-ergodic operators

被引:23
作者
Davies, EB [1 ]
机构
[1] Kings Coll London, Dept Math, London WC2R 2LS, England
关键词
D O I
10.1007/s002200000352
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We define a class of pseudo-ergodic non-self-adjoint Schrodinger operators acting in spaces l(2)(X) and prove some general theorems about their spectral properties.; We then apply these to study the spectrum of a non-self-adjoint Anderson model acting on l(2)(Z), and find the precise condition for 0 to lie in the spectrum of the operator. We also introduce the notion of localized spectrum for such operators.
引用
收藏
页码:687 / 704
页数:18
相关论文
共 18 条
[1]  
Bottcher A., 1994, J. Integral Equations Appl., V6, P267
[2]  
BOTTCHER A, 1995, FIELDS I MONOGRAPHS, P2
[3]  
Bottcher A., 1998, Introduction to Large Truncated Toeplitz Matrices
[4]   Non-hermitean delocalization: Multiple scattering and bounds [J].
Brezin, E ;
Zee, A .
NUCLEAR PHYSICS B, 1998, 509 (03) :599-614
[5]  
DAHMEN HA, 1999, CONDMAT9903276
[6]   Semi-classical states for non-self-adjoint Schrodinger operators [J].
Davies, EB .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 200 (01) :35-41
[7]   Wild spectral behaviour of anharmonic oscillators [J].
Davies, EB .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2000, 32 :432-438
[8]  
DAVIES EB, IN PRESS P ROY SOC A
[9]   Spectral curves of non-hermitian hamiltonians [J].
Feinberg, J ;
Zee, A .
NUCLEAR PHYSICS B, 1999, 552 (03) :599-623
[10]   Distribution of eigenvalues in non-Hermitian Anderson models [J].
Goldsheid, IY ;
Khoruzhenko, BA .
PHYSICAL REVIEW LETTERS, 1998, 80 (13) :2897-2900