A Closed Form for Slant Submanifolds of Generalized Sasakian Space Forms

被引:0
|
作者
Alegre, Pablo [1 ]
Barrera, Joaquin [2 ]
Carriazo, Alfonso [2 ]
机构
[1] Univ Pablo Olavide, Dept Econ Metodos Cuantitativos & Hist Econ, Area Estadist & Invest Operat, Ctra Utrera,Km 1 41013, Seville 41013, Spain
[2] Univ Seville, Fac Math, Dept Geometry & Topol, Apdo Correos 1160, E-41080 Seville, Spain
关键词
slant submanifolds; generalized Sasakian space forms; closed form; conformal form; Maslov form;
D O I
10.3390/math7121238
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Maslov form is a closed form for a Lagrangian submanifold of C-m, and it is a conformal form if and only if M satisfies the equality case of a natural inequality between the norm of the mean curvature and the scalar curvature, and it happens if and only if the second fundamental form satisfies a certain relation. In a previous paper we presented a natural inequality between the norm of the mean curvature and the scalar curvature of slant submanifolds of generalized Sasakian space forms, characterizing the equality case by certain expression of the second fundamental form. In this paper, first, we present an adapted form for slant submanifolds of a generalized Sasakian space form, similar to the Maslov form, that is always closed. And, in the equality case, we studied under which circumstances the given closed form is also conformal.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Slant submanifolds in Sasakian manifolds
    Cabrerizo, JL
    Carriazo, A
    Fernández, LM
    Fernández, M
    GLASGOW MATHEMATICAL JOURNAL, 2000, 42 : 125 - 138
  • [32] Ricci and Scalar Curvatures of Hemi-Slant Submanifolds in 3-Sasakian Space Forms
    Balgeshir, M. B. Kazemi
    Uddin, S.
    Ahmadsaryi, S. Tarighi
    JOURNAL OF MATHEMATICAL EXTENSION, 2021, 15 (04)
  • [33] BIHARMONIC SLANT SUBMANIFOLDS IN SPACE FORMS
    Javed, Hafiz Haris
    Rehman, Najma Abdul
    PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCIENCE, 2024, 25 (04): : 263 - 271
  • [34] A LOWER BOUND OF NORMALIZED SCALAR CURVATURE FOR BI-SLANT SUBMANIFOLDS IN GENERALIZED SASAKIAN SPACE FORMS USING CASORATI CURVATURES
    Siddiqui, A. N.
    Shahid, M. H.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2018, 87 (01): : 127 - 140
  • [35] Generalized Wintgen inequality for slant submanifolds in metallic Riemannian space forms
    Choudhary, Majid Ali
    Blaga, Adara M.
    JOURNAL OF GEOMETRY, 2021, 112 (02)
  • [36] Generalized Wintgen inequality for slant submanifolds in metallic Riemannian space forms
    Majid Ali Choudhary
    Adara M Blaga
    Journal of Geometry, 2021, 112
  • [37] An optimized Chen first inequality for special slant submanifolds in Lorentz-Sasakian space forms
    O. Postavaru
    I. Mihai
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2021, 115
  • [38] An optimized Chen first inequality for special slant submanifolds in Lorentz-Sasakian space forms
    Postavaru, O.
    Mihai, I
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2021, 115 (03)
  • [39] Slant submanifolds of quaternionic space forms
    Vilcu, Gabriel Eduard
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2012, 81 (3-4): : 397 - 413
  • [40] Contact CR-warped product submanifolds in generalized Sasakian Space Forms
    Al-Ghefari, Reem
    Al-Solamy, Falleh R.
    Shahid, Mohammed H.
    BALKAN JOURNAL OF GEOMETRY AND ITS APPLICATIONS, 2006, 11 (02): : 1 - 10