Soliton like and multi-soliton like solutions for the Boiti-Leon-Pempinelli equation

被引:79
作者
Lü, ZS [1 ]
Zhang, HQ
机构
[1] Dalian Univ Technol, Dept Math Appl, Dalian 116024, Peoples R China
[2] Chinese Acad Sci, MM Key Lab, Beijing 10080, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1016/S0960-0779(03)00104-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The sine-Gordon equation or the sinh-Gordon equation are related to the Boiti-Leon-Pempinelli (BLP) equation by certain transformation [Inv. Probl. 3 (1987) 37; Theor. Math. Phys. 100 (1994) 1075]. In this paper, we construct explicit exact solutions for the BLP equation by using a further extended tanh method [Phys. Lett. A. 307 (2003) 269); Chaos, Solitons & Fractals 17 (2003) 669] and symbolic computation system Maple. We obtain abundant soliton like, multi-soliton like and period form solutions of the equation. (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:527 / 531
页数:5
相关论文
共 16 条
[1]  
Ablowitz M.J., 1991, SOLITONS NONLINEAR E
[2]   INTEGRABLE TWO-DIMENSIONAL GENERALIZATION OF THE SINE-GORDON EQUATION AND SINH-GORDON EQUATION [J].
BOITI, M ;
LEON, JJP ;
PEMPINELLI, F .
INVERSE PROBLEMS, 1987, 3 (01) :37-49
[3]  
Fan E, 2001, APPL MATH J CHINES B, V16, P149
[4]   A note on the homogeneous balance method [J].
Fan, EG ;
Zhang, HQ .
PHYSICS LETTERS A, 1998, 246 (05) :403-406
[5]   Generalized tanh method with symbolic computation and generalized shallow water wave equation [J].
Gao, YT ;
Tian, B .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1997, 33 (04) :115-118
[7]  
GARDNER CS, 1967, PHYS REV LETT, V19, P1905
[8]  
Gu CH., 1999, DARBOUX TRANSFORMATI
[10]   EXACT-SOLUTIONS FOR SOME COUPLED NONLINEAR EQUATIONS .2. [J].
HUIBIN, L ;
KELIN, W .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (18) :4097-4105